

UNIVERSITY OF MACEDONIA

DOCTORAL STUDIES PROGRAMME

DEPARTMENT OF APPLIED INFORMATICS

THE MATHESIS META-AUTHORING FRAMEWORK FOR INTELLIGENT

TUTORING SYSTEMS IN MATHEMATICS

Doctoral Thesis

of

Dimitrios Sklavakis

Thessaloniki, 07/2015

 ii

THE MATHESIS META-AUTHORING FRAMEWORK FOR INTELLIGENT

TUTORING SYSTEMS IN MATHEMATICS

Dimitrios Sklavakis

B.Sc. in Mathematics, Aristotle University of Thessaloniki, 1993

M.Sc. in Artificial Intelligence, Edinburgh University, 1998

Doctoral Thesis

Submitted in partial fulfilment of the requirements for the

DEGREE OF DOCTOR OF PHILOSOPHY

IN APPLIED INFORMATICS

Supervisor: Dr. Ioannis Refanidis, Associate Professor

Approved by the 7-membered examining committee the ɖɖ/ɛɛ/ŮŮŮŮ

Dr. Ioannis Refanidis

Associate Professor

Dr. Stefanidis Georgios,

Professor

Dr. Chatzigeorgiou Alexandros

Associate Professor

éééééééééé éééééééééé éééééééééé..

Dr. Satratzemi Maria

Professor

Dr. Evangelidis Georgios,

Professor

Dr. Samaras Nikolaos

Associate Professor

éééééééééé éééééééééé éééééééééé..

Dr. Sakellariou Ilias

Lecturer

éééééééééé
ɄɚɖəŰɟɞɚɞɔɐůŰŮ Ůŭɩ Űɞ ɞɜɞɛŬŰŮˊɩɜɡɛɞ ůŬɠ

 iv

Dedication

Dedicated to the Teachers, the Students and the Researchers of Knowledge.

ȷűɘŮɟɤɛɏɜɞ ůŰɞɡɠ ȹŬůəɎɚɞɡɠ, Űɞɡɠ ɀŬɗɖŰɏɠ əŬɘ Űɞɡɠ ȺɟŮɡɜɖŰɏɠ Űɖɠ ũɜɩůɖɠ.

 v

Acknowledgements

I would like to thank my supervisor, Dr. Ioannis Refanidis, for the confidence and

patience he showed.

I would like to thank my wife, Kyriaki, for her long-lasting support and patience.

I would like to thank my friend and colleague, Mr. Sotiris Sakellaris, B.Sc, M.Sc.

Mathematics, for our enlightening discussions as well as for his efforts in using the

MATHESIS framework.

Finally, I would like to thank all the reviewers and editors of my published work

for their helpful comments.

ȺɡɢŬɟɘůŰɑŮɠ

ŪŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ Űɞɜ ŮˊɘɓɚɏˊɞɜŰŬ Űɖɠ ŭɘŬŰɟɘɓɐɠ ŬɡŰɐɠ, ȹɟ. ȽɤɎɜɜɖ

ɅŮűŬɜɑŭɖ, ɔɘŬ Űɖɜ ŮɛˊɘůŰɞůɨɜɖ əŬɘ Űɖɜ ɡˊɞɛɞɜɐ ˊɞɡ ŮˊɏŭŮɘɝŮ.

ŪŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ Űɖ ůɨɕɡɔɧ ɛɞɡ, ȾɡɟɘŬəɐ, ɔɘŬ Űɖɜ ɛŬəɟɧɢɟɞɜɖ

ɡˊɞůŰɐɟɘɝɖ əŬɘ ɡˊɞɛɞɜɐ.

ŪŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ Űɞɜ űɑɚɞ əŬɘ ůɡɜɎŭŮɚűɞ, ə. ɆɤŰɐɟɖ ɆŬəŮɚɚɎɟɖ, Űɧůɞ

ɔɘŬ Űɘɠ ŭɘŬűɤŰɘůŰɘəɏɠ ɛŬɠ ůɡɕɖŰɐůŮɘɠ, ɧůɞ əŬɘ ɔɘŬ Űɖɜ ˊɟɞůˊɎɗŮɘŬ ˊɞɡ əŬŰɏɓŬɚɚŮ ůŰɖ

ɢɟɐůɖ Űɞɡ ůɡůŰɐɛŬŰɞɠ ɀȷŪȼɆȽɆ.

ɇɏɚɞɠ, ɗŬ ɐɗŮɚŬ ɜŬ ŮɡɢŬɟɘůŰɐůɤ ɧɚɞɡɠ Űɞɡɠ əɟɘŰɏɠ əŬɘ ŮˊɘɛŮɚɖŰɏɠ Űɤɜ

ŭɖɛɞůɘŮɨůŮɩɜ ɛɞɡ ɔɘŬ Űɘɠ ŮˊoɘəɞŭɞɛɖŰɘəɏɠ ˊŬɟŬŰɖɟɐůŮɘɠ Űɞɡɠ.

 vi

Abstract: The effect of the knowledge acquisition bottleneck is still limiting the

widespread use of knowledge-based systems (KBS), especially in the area of model-

tracing tutors, as they demand the development of deep domain expertise, tutoring and

student models. The MATHESIS meta-authoring framework for model-tracing tutors,

presented in this thesis, aims at maximizing knowledge reuse. This is achieved through

ontological representation of both the declarative and procedural knowledge of a model-

tracing tutor (MTT), as well as of the declarative and procedural authoring knowledge of

the process to develop a MTT. Declarative knowledge is represented in Ontology Web

Language (OWL). Procedural knowledge is represented using the concepts of atomic and

composite processes of OWL-S web services description ontology. The framework

provides authoring tools, integrated into the Prot®g® OWL ontology editor, for the

development and management of the MTTôs ontological representation. It also provides

meta-authoring tools for the ontological representation of the authoring expertise as a set

of composite authoring processes and atomic authoring statements. The latter constitute a

language, ONTOMATH, for building executable authoring models that, when executed by

the tools, guide non-expert authors like domain experts to the creation of new model-

tracing tutors. The framework, being in an experimental stage, was used for the

development of a monomial multiplication and division tutor. However, the overall

design and implementation aimed at constituting the framework as a proof-of-concept

system that can be used for the meta-knowledge engineering of more complex model-

tracing tutors.

 vii

Table of Contents

List of Tables ...x

List of Figures .. xi

Chapter 1: Introduction ...17

1.1 The Problem ..17

1.2 Motivation ...20

1.3 Contribution ..22

1.4 Summary of Results ...24

Chapter 2: The MATHESIS Algebra School ..28

2.1 Introduction ...28

2.2 The MATHESIS Algebra Tutor..31

2.2.1 The Tutorôs Domain Expertise Model ..34

2.2.2 Intelligent Task Recognition ...39

2.2.3 The Tutoring Model: Deep Model Tracing With Intelligent Task

Recognition ...44

2.3 The Learning Management System ..57

2.4 Related Work ..63

2.5 Evaluation of the MATHESIS System ...66

2.5.1 Evaluation by Teachers ...67

2.6 Discussion and Further Work ...75

Chapter 3: The MATHESIS Meta-Authoring Framework79

3.1 Introduction ...79

3.2 Background ...81

3.2.1 Related Work ..81

3.2.2 Ontological Engineering and the Knowledge Gap Problem86

3.3 An Overview of the MATHESIS Meta-Authoring Framework88

3.4 The ONTOMATH Meta-Knowledge Engineering Language93

3.4.1 Procedural Knowledge Representation: The OWL-S Process Model

...94

 viii

3.4.2 Procedural Authoring Knowledge Representation: The ONTOMATH

language ..97

3.5 The MATHESIS Authoring Tools ..101

3.5.1 The Tutor Authoring Tools ...101

3.5.2 The Authoring Processes (Meta-Authoring) Tools...................107

Chapter 4: Tutor Authoring in the MATHESIS Framework113

4.1 Introduction ...113

4.2 Tutor Initialization ..114

4.3 Cognitive model initialization...117

4.4 Tutoring model initialization ..121

4.5 Program code model ...124

4.6 Interface model initialization ..126

4.7 Execution of Authoring Processes ..128

Chapter 5: Discussion ...152

5.1 Knowledge reuse and scalability ..152

5.2 Conclusions and further work ...156

Appendix A: Complete Math Domain Cognitive Model of the MATHESIS Algebra

Tutor ..160

A1. Monomial multiplication: ..160

A2. Monomial Division ..160

A3. Collection of Like Terms ..161

A4. Monomial Power ..161

A5. Monomial by Polynomial Multiplication ...162

A6. Polynomial by Polynomial Multiplication ...162

A7 Parenthesesô Elimination...162

A8. Square of Sum/Difference Expansion ..163

A9. Product of Sum by Difference Expansion ..164

A10. Cube of Sum/Difference Expansion ..164

A11. Factoring by Common Factor ..166

A12 Factoring by Difference of Squares ..167

 ix

A13. Factoring by Sum of Cubes ..167

A14. Factoring by Difference of Cubes ..169

A15. Factoring by Square of Sum/Difference ..170

A16. Factoring the Quadratic Form ..170

A17. Factoring by Term Grouping ...171

Appendix B: The ONTOMATH Atomic Authoring Statements Reference174

B1. OntoMath_Browse Statements ...174

B2. OntoMath_Collection Statements ..174

B3. OntoMath_String Statements ...175

B4. OntoMath_Dialog Statements ..175

B5. OntoMath_Ontology_Editing Statements ..176

B6. OntoMath_Tutoring_Processes_Editing Statements............................179

B7. OntoMath_Ontology_Predicates ..179

References ..180

 x

List of Tables

Table 2.1. Expanding -ρπØ-ρ Ø ρ in three different ways38

Table 2.2. Alternative Path for Factoring τØɕØ χ τψ55

Table 2.3. The Fine-Grained Student Model: Solution Steps56

Table 2.4. Performance of skill ñCalculate common factorò. The percentage is

2/4=50% ..57

Table 2.5. Evaluation results given by forty (40) math teachers after a three-hour

hands-on workshop (questions are translated from Greek)69

Table 2.6. Evaluation results given by twenty (20) students after a three-month period

(questions are translated from Greek) ...71

Table 2.7. Studentsô performance rise by the MATHESIS Algebra Tutor73

Table 3.1. Common control constructs supported by the OWL-S process model .96

Table 3.2. The ONTOMATH Statements and their operations99

 xi

List of Figures

Fig. 2.1. The MATHESIS Algebra Tutor Interface. ..32

Fig. 2.2. MathML Presentation code for expression τØɕØ χ τψ before and after

intelligent task recognition ..40

Fig. 2.3 Mathematical objects created by intelligent task recognition for expression

τØɕØ χ τψ ...41

Fig. 2.4. The student proposes the operation ñFACTORING-Common Factorò from

the drop-down list of supported operations to be applied to the selected

expression. ..46

Fig. 2.5. The tutor checks and confirms the studentôs suggested operation ñCommon

Factorò through messages 2.1 and 2.2 (top). The common factor under

question here is 4, denoted by the empty square scaffold in the

ñANSWERING SPACEò area (bottom right).47

Fig. 2.6. The tutor confirms the entered common factor and asks for the first quotient

by messages 2.3 and 2.4 (top). The quotient under question is τØɕØ

χȡτ ØɕØ χ denoted by the Ǐ
Ǐ
 *(Ǐ)

Ǐ
 scaffold in the

ñANSWERING SPACEò area (right). ..48

Fig. 2.7. The tutor confirms the first quotient and asks for the second quotient through

messages 2.7 and 2.8 (top). The quotient under question is τψȡτ ρς

denoted by the empty square scaffold in the ñANSWERING SPACEò

area (right). ..49

Fig. 2.8. Successful completion of the common factor method in expression τØɕØ

χ τψ. ..50

 xii

Fig. 2.9. Successful completion of the monomial-polynomial multiplication ØɕØ

χ. ..51

Fig. 2.10. First step of factoring Ø χØρς. The student must identify ÁϽÂ 0

ρς and Á Â 3 χ. ...52

Fig. 2.11. Responding to a student error. The tutor displays an error message, gives

help (top, message 6.4) and asks for the correct answer (right).53

Fig. 2.12. Successful completion of factoring τØɕØ χ τψ.53

Fig. 2.13. The Student Model: Skill Performance Statistics57

Fig. 2.14. The Teachersô Menu ..58

Fig. 2.15. The Classes Management Page. ..58

Fig. 2.16. Test Paper Editing. The author has just created exercise no. 22 using the

HTML editor (b) and inserted expression τØɕØ χ τψ for the first

question using the math editor (c). The paper is shown on the right with

the newly added exercise at the bottom (d).60

Fig. 2.17. Individualized Assignment of Exercises to Students.61

Fig. 2.18. Student Assessment: Selecting a Solved Exercise62

Fig. 3.1 The MATHESIS Meta-Authoring Framework...92

Fig. 3.2. The MATHESIS Tools as a tab widget in Prot®g®: (a) Framework-specific

(model-tracing) Tutor Authoring Tools, (b) Authoring Processes (Meta-

Authoring) Tools, (c) The MATHESIS Ontology Tab93

Fig. 3.3. Top level of the OWL-S process ontology (from Martin et al., 2005)96

Fig. 3.4. Part of the ONTOMATH Authoring Processes Ontology98

Fig. 3.5 The Tutor Initialization Tools...101

Fig. 3.6 The XML DOM tree of the MATHESIS Algebra Tutor interface103

Fig. 3.7 The Tutoring Processes Advanced Authoring Tools104

 xiii

Fig. 3.8 A newly created Tutoring Process ..104

Fig. 3.9 The Calling Sequence Tree for Tutoring Process multiplyMainParts ..105

Fig. 3.10 The Authoring Processes (Meta-Authoring) Tools108

Fig. 4.1. The Model-Tracing Tutor Authoring Tools Window: (a) The Tutor

Initialization Tools, (b) The Advanced Tools for Tutoring Processes

Authoring, (c) Tree representation of tutoring process Model-Tracing-

Algorithm for the execute-monomial-multiplication task...........114

Fig. 4.2. The top-level ontological representation of the tutor115

Fig. 4.3. Author is prompted by the tools to enter the name of a newly created tutor

instance. ..116

Fig. 4.4. (a) The ITS_Implemented hierarchy (b) Instance monomial-

multiplication-tutor is selected (c) Properties of the selected instance

...116

Fig. 4.5. Author is prompted by the tools to enter the name of a newly created

cognitive task instance. ...117

Fig. 4.6. (a) The Domain_Task hierarchy (b) Instance execute-monomial-

multiplication is selected (c) Properties of the selected instance .118

Fig. 4.7. (a) The ITS-Teaching-Model hierarchy. (b) Instance execute-monomial-

multiplication-Model-Tracing-Algorithm has been selected. (c)

Properties of the selected instance are shown.119

Fig. 4.8. (a) The Domain-Knowledge-Component hierarchy. (b) Instance

monomial has been selected. (c) Properties of the selected instance are

shown. ...120

Fig. 4.9. Representation of the JavaScript function multiplyMainParts124

Fig.4.10 Part of the JavaScript_Statement ontology125

 xiv

Fig. 4.11. The HTML User Interface DOM Ontological (left) and Visual (right, top)

Representation...127

Fig. 4.12. The Authoring Processes Authoring (Meta-Authoring) Tools displaying

Authoring Process authoring_task_present_domain_task.129

Fig. 4.13. The identify_input_knowledge_components authoring process. ...132

Fig. 4.14. Locating a monomial instance in the ontology...................................134

Fig. 4.15. Creating a new instance of monomial ..135

Fig. 4.16 Instance currentAuthoringSession for the monomial-multiplication-tutor

...136

Fig. 4.17. The define-interface-elements-for-input-knowledge-components

authoring process ..137

Fig. 4.18 The add-interface-element-to-DOM authoring process139

Fig. 4.19 Ontological representation of a monomial tutor with its user interface141

Fig. 4.20 Authoring process define-variables-for-interface-elements142

Fig. 4.21 The expressionInputControl JavaScript variable143

Fig. 4.22 The define_code_to_initialize_interface_elements authoring process

...144

Fig. 4.23 The getHTMLElementProperty authoring process145

Fig. 4.24 Ontological representation of JavaScript statement

expressionInputControl=getElementById(ñexpressionInputControlò)147

Fig. 4.25 Authoring process get_interface_element_reference148

Fig. 4.26 Tutoring process execute-monomial-multiplication-Presentation .149

15

CHAPTER 1

 16

 17

Chapter 1: Introduction

1.1 THE PROBLEM

The main goal of this thesis is the development of an ontology-based authoring

framework for the development of model-tracing tutors (MTT) for mathematics. The

purpose of the framework is to encode the knowledge of expert authors of MTTs and

make it available and reusable to other authors, either equally or less expert. This

framework is called MATHESIS, the Greek word for ñlearningò, the root of the word

ñmathematicsò.

Intelligent tutoring systems (ITS), particularly model-tracing tutors, have been

proven quite successful in the area of mathematics (Koedinger, Anderson, Hadley, &

Mark, 1997; Koedinger & Corbett, 2006). Despite their efficiency (Corbett 2001), these

tutors are expensive to build both in time and human resources (Aleven, McLaren,

Sewall, & Koedinger, 2006). This is due to the well-known knowledge acquisition

bottleneck (Hoffman 1987), comprising the extraction of knowledge from domain

CHAPTER 1: INTRODUCTION

 18

experts, the representation of this knowledge and its implementation in effective

knowledge-based systems.

Knowledge acquisition and its counterpart, knowledge reuse, have been proven to

be the key problems for the development of expertise models, the models that represent

and produce the problem-solving knowledge in knowledge-based systems. The main

consequences are:

¶ High development demands in human resources, time and money.

¶ Demand for knowledge engineers possessing significant expertise.

¶ Shallow, incomplete or even incorrect expertise models.

¶ Difficulties in modifying and/or expanding the expertise models.

¶ Inability to reuse developed expertise models in similar or new knowledge-based

systems (an effect described as ñre-inventing the wheelò).

In the case of MTTs, the knowledge acquisition bottleneck gets even more serious

as these systems must contain two expertise models:

i. The domain expertise model or problem solver, which represents the problem-

solving knowledge of the tutored domain. This model is used to produce the valid

solution steps of the tutored problem and allow the tutor to provide guidance and

feedback to the student.

ii. The pedagogical or tutoring model, which represents the teaching knowledge of

the system such as how to present the problem, what problem-solving tools to

provide to the students for entering their solution steps, when and how to give

help, what kind of help/guidance to give etc.

1.1 The Problem

 19

In turn, these models affect directly the design of the user interface model, which

orchestrates the interactions between the aforementioned two models to produce the

desired tutoring behaviour. In addition, some MTTs require the development of another

model, the student model, which represents studentsô mastery of the tutored domain. This

model is used by the system to provide student-adapted tutoring either within problems

(micro-adaptation) or between problems (macro-adaptation).

The most difficult model to build is the domain expertise model. At the same

time, it is the most critical one since it defines:

i. The tutorôs breadth, that is, how many domain skills it can teach.

ii. The tutorôs depth, that is, how complex skills, in terms of the sub-skills contained,

it can teach.

iii. The tutorôs granularity, that is, how fine-grained are the solution steps that the

tutor can produce and guide.

iv. The tutorôs scalability, that is, the ability to reuse the tutorôs domain expertise

model for extending its breadth and depth.

Despite the efforts, advancements and successes in the currently developed

authoring frameworks and the corresponding tutors, these frameworks have worked

around the knowledge acquisition problem rather than confronting it directly. As a

consequence, most of the developed tutors suffer from limited depth and breadth,

whereas those having broader and deeper domain expertise models suffer from scalability

issues. The motivation of this thesis is to develop an authoring framework that will deal

directly with the knowledge acquisition problem in order to produce tutors that cover

broader and more complex domains in a scalable way.

CHAPTER 1: INTRODUCTION

 20

1.2 MOTIVATION

In an extensive survey of authoring tools, Murray (2003a) concluded that they

suffered from a number of problems such as isolation, fragmentation and lack of

communication, interoperability and re-usability of the tutors they build. The same

problems had been identified three years earlier in (Mizoguchi & Bourdeau, 2000). These

problems are not specific to the domain of ITS authoring, as they penetrate the whole

area of expert systems development (Lenat & Guha, 1990; Lenat, 1995). A highly

promising solution to all of them is ontological engineering, that is, the development of

ontologies that represent declaratively the expertise that lies inside any intelligent system

(Mizoguchi, 2004). The main advantages of ontologies are that:

i. They impose a systematic and structured development of knowledge, just like

developing a mathematical theory with definitions, properties, axioms and

theories, and

ii. The developed knowledge, being in a declarative form, is open for inspection and

therefore mostly reusable (G·mez-P®rez, Fern§ndez-L·pez, Corcho, 2004).

Based on the success of the ontological engineering approach in the domain of

expert systems (Aitken & Sklavakis, 1999; Lenat, 1995; Sklavakis, 1998), as well as in

the domain of intelligent tutoring systems (Mizoguchi, Hayashi, & Bourdeau, 2009), two

research goals were set:

i. The complete ontological representation of a model-tracing tutorôs modules, that

is, the user interface, the tutoring model, the domain expertise model, the student

model, as well as of the authoring knowledge that was used to build these models,

and

ii. The extensive use of standardized languages and publicly available modular tools.

1.2 Motivation

 21

For these reasons, a bottom-up approach was adopted: Initially, the MATHESIS

Algebra Tutor was developed to be used as a prototype target tutor (Sklavakis &

Refanidis, 2008; Sklavakis & Refanidis 2013). It is a model-tracing tutor that teaches

expansion and factoring of algebraic expressions. Having knowledge reuse as its primary

design guidelines, the tutor is implemented using HTML for the user interface and

JavaScript for the domain expertise and tutoring models. The primary interface element is

Design Scienceôs WebEq Input Control applet1, an editor for displaying and editing

mathematical expressions. The WebEq Input control is scriptable through JavaScript and

uses MathML2 to represent algebraic expressions. The tutor has a cognitive model of

considerable breadth, depth and granularity, easily scalable. Then, based on the

knowledge used to develop the MATHESIS Algebra Tutor, an initial version of the

MATHESIS ontology has been developed using the Ontology Web Language - OWL3

(Sklavakis, & Refanidis, 2010b). The ontology was developed using the Prot®g® ontology

editor4. As this first version of the ontology was developed in a bottom-up direction, it

emphasized on the representation of the tutorôs models, namely the interface, tutoring and

domain expertise models. The ontology also contained a representation of the authoring

knowledge at a rather conceptual level. At the final stage, generic meta-authoring tools

were developed (Sklavakis & Refanidis, 2014). These tools include:

i. An executable authoring language, ONTOMATH, based on the process model of

OWL-S5,

1 http://www.dessci.com/
2 http://www.w3.org/Math/
3 http://www.w3.org/TR/owl-features/
4 http://protege.stanford.edu
5 http://www.w3.org/Submission/OWL-S/

CHAPTER 1: INTRODUCTION

 22

ii. Editing tools for the development of ONTOMATH executable authoring expertise

models, that is, an ontological representation of the declarative and procedural

authoring knowledge, and

iii. An interpreter for executing the ONTOMATH authoring models.

These tools constitute the MATHESIS authoring framework as a meta-authoring

framework. In an authoring framework the tools allow expert authors to directly develop

the various models of a tutor. In the MATHESIS meta-authoring framework expert

authors, using the ONTOMATH language, build executable authoring models that encode

their authoring knowledge of how to build a tutor. When these authoring models are

executed by non-expert domain authors they guide them in developing the ontological

representations of the tutorsô models. These ontological representations are automatically

translated into program code that implements the tutors.

 Using these tools, an authoring model was developed that, when executed by the

interpreter, guides a trained domain author (teacher of mathematics) to build the

ontological representation of a model-tracing monomial multiplication tutor identical to

the one contained in the original MATHESIS Algebra Tutor. In parallel, special

authoring tools have been developed for the authoring of model-tracing tutors. These

tools are used to support the meta-authoring tools in the development of the executable

authoring model by automating some top-level authoring processes of the MTT under

development and providing visualization and browsing facilities for the inspection of the

tutorôs developed models. All authoring tools were developed as a tab widget in Prot®g®

using Java.

1.3 CONTRIBUTION

During the research for this thesis, the following contributions have been made:

1.3 Contribution

 23

A. Publications and System Demonstrations

Sklavakis, D., & Refanidis, I. (2008). An Individualized Web-Based Algebra

Tutor Based on Dynamic Deep Model-Tracing. Proceedings of the Fifth Hellenic

Conference on Artificial Intelligence (SETN ô08), (pp. 389-394). Heidelberg:

Springer.

Sklavakis, D. & Refanidis, I. (2009a). The MATHESIS Algebra Tutor: Web-

based Expert Tutoring via Deep Model Tracing. Interactive Event. Proceedings of

the 14th International Conference on Artificial Intelligence in Education (AIED

2009), (p. 795). Amsterdam: IOS Press.

Sklavakis, D., & Refanidis, I. (2009b). The MATHESIS Ontology: Reusable

Authoring Knowledge for Reusable Intelligent Tutors. Proceedings of the 7th

International Workshop on Ontologies and Semantic Web for E-Learning (SWEL

2009), (pp. 86-90).

Sklavakis, D., & Refanidis, I. (2010a). MATHESIS: A Web-Based Intelligent

Tutoring School for Algebra. Intelligent System Demostration at the 6th Hellenic

Conference on Artificial Intelligence (SETN 2010).

Sklavakis, D., & Refanidis, I. (2010b). Ontology-Based Authoring of

Intelligent Model-Tracing Math Tutors. Proceedings of the Fourteenth

International Conference on Artificial Intelligence (AIMSA 2010), (pp. 201-210).

Heidelberg: Springer.

Sklavakis, D., & Refanidis, I. (2013). MATHESIS: An Intelligent Web-Based

Algebra Tutoring School. International Journal of Artificial Intelligence in

Education Vol. 22 (2) (pp. 191-218). Amsterdam: IOS Press.

Sklavakis, D., & Refanidis, I. (2014). The MATHESIS meta-knowledge

engineering framework: Ontology-driven development of intelligent tutoring

systems. Applied Ontology Vol. 9 (3-4) (pp. 237-265). Amsterdam: IOS Press.

B. Software

¶ The MATHESIS intelligent Algebra Tutoring System (Section 2)

(http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm)

¶ The MATHESIS Authoring Tools (Sections 3 and 4)

(http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/01-Authorring_Tools.mp4) and

(http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/02-Authoring_Processes.mp4)

¶ The MATHESIS ontology (Sections 3 and 4)

http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm
http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/01-Authorring_Tools.mp4
http://ai.uom.gr/dsklavakis/en/mathesis/kes2011/02-Authoring_Processes.mp4

CHAPTER 1: INTRODUCTION

 24

1.4 SUMMARY OF RESULTS

Two are the main results of this thesis, one concerning the MATHESIS Algebra

Tutor and the other the MATHESIS meta-authoring framework.

First, the MATHESIS Algebra Tutor is a successful proof-of-concept system

(Skavakis & Refanidis, 2013). The basic research result is that, in order to build

successful intelligent real-world tutoring systems, we must build powerful domain

expertise models. The engineering of such broad and deep models has to overcome the

common obstacle of all expert systems, the knowledge acquisition bottleneck: the

extraction of the expertise from domain experts and its representation in efficient ways.

In the domain of knowledge engineering, the most profitable solution up to now is

knowledge reuse, which is achieved through open, modular, interchangeable, inspect-

able, formal knowledge representations and system implementations (Aitken & Sklavakis

1999). Equally important, the models must be deep and broad, having a wide basis of low

level knowledge about simple task performance, on top of which is built the knowledge

for performing higher level domain tasks. Otherwise, models are brittle (Lenat & Guha

1990), performance is limited, scaling up is intractable and the systems fail to cope with

real-world demands. The MATHESIS Algebra Tutor incorporates all these characteristics

that make it a successful real-world intelligent tutoring system.

Second, the MATHESIS meta-authoring framework achieves the development of

broad, deep, granular and scalable authoring models. It allows the ontological

representation of expert authoring knowledge in an arbitrary breadth, depth and

granularity in the form of executable authoring processes. Thus, it makes MTTsô

authoring scalable by spreading its load over various levels of reusable authoring

processes and over various authors, experts and non-experts, that can reuse them by

browsing, locating and modifying them (Sklavakis & Refanidis, 2014).

1.4 Summary of Results

 25

In Chapter 2 the MATHESIS Algebra School is described with emphasis on the

MATHESIS Algebra Tutor around which the school is built. Chapter 3 describes the

MATHESIS meta-authoring framework and its constituent parts. Related work is

presented separately for the MATHESIS Algebra Tutor (Section 2.4) and separately for

the MATHESIS framework (Section 3.2). Chapter 4 describes how the framework was

used to develop a monomial multiplication model-tracing tutor. Finally, Chapter 5

discusses the results of the research as well as further research directions.

26

Chapter 2

27

28

Chapter 2: The MATHESIS Algebra School

2.1 INTRODUCTION

One-to-one tutoring has proven to be one of the most effective ways of teaching.

It has been shown (Bloom 1984) that the performance of the average student under an

expert tutor is about two standard deviations above the average performance of the

conventional class (30 students to one teacher). That is, 50% of the tutored students

scored higher than 98% of students in the conventional class. However, it is also known

that one-to-one tutoring is a very expensive form of education. Due to this cost, we are

still in the era of mass education, struggling to raise the teacher to student ratio. The

problem of designing and implementing educational environments as effective as

individual tutoring was termed by Bloom as ñthe two sigma problemò, named after the

mathematical symbol of standard deviation, ů.

The implementation of the one-to-one tutoring model by Intelligent Tutoring

Systems (ITSs) has motivated researchers to aim to develop ITSs that provide the same

tutoring quality as a human tutor (VanLehn 2006). Model Tracing Tutors (MTTs)

2.1 Introduction

 29

(Anderson, Corbett, Koedinger, & Pelletier, 1995) have shown significant success in

domains like mathematics (Koedinger & Corbett 2006), computer programming (Corbett

2001) and physics (VanLehn, Lynch, Schulze, Shapiro, & Shelby, 2005). These tutors are

based on a domain expertise model that solves the problem under tutoring and produces

the correct step(s). At each step, the model-tracing algorithm matches the solution(s)

produced by the model to that provided by the student and gives positive or negative

feedback, hints or/and help messages. However, the domain models of MTTs are hard to

author (Aleven, MgchjhgcjhgvbvcncLaren, Sewall, & Koedinger, 2006). The main

reason for this is the knowledge acquisition bottleneck: extracting the knowledge from

the domain experts and encoding it into a MTT. Knowledge reuse has been proposed as a

key factor to overcome this obstacle (Murray 2003a; Mizoguchi & Bourdeau 2000).

Since expert knowledge and, particularly, tutoring knowledge is so hard to create, re-

using it is of paramount importance. A good example of knowledge reuse is the Mass

Production mechanism provided by Carnegie Mellonôs Cognitive Tutors Authoring Tools

(CTAT). This mechanism allows the creation of new tutors from existing ones for

isomorphic problems, that is problems having nearly the same solution steps (Aleven,

McLaren, & Sewall, 2009).

The main goal of this thesis is to develop authoring tools for model-tracing tutors

in mathematics, with knowledge re-use as the primary characteristic of the authored

tutors as well as for the authoring knowledge used by the tools. For this reason, in the

first stage of the MATHESIS project, an Algebra Tutor was developed to be used as a

prototype target tutor (Sklavakis & Refanidis 2008; Sklavakis & Refanidis 2013). The

purpose of developing the tutor was twofold: a) to investigate the design and

implementation effort for developing an MTT having a domain expertise model with a

breadth of 16 top level skills (algebraic operations) and ï after elaborate cognitive task

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 30

analysis ï a greater depth and b) to provide the knowledge that would be represented in

an ontology on top of which the authoring tools would be implemented (Sklavakis &

Refanidis 2009b; Sklavakis & Refanidis 2010b; Sklavakis & Refanidis 2014).

Concerning the former research goal, as the domain expertise model has been

extended and deepened, the scaling-up problem was confronted: if a problem contains

more than one task to be performed then a more complex task arises, i.e., identifying the

tasks to perform! The solution to this tutoring problem was to equip the tutor with

intelligent task recognition through sophisticated parsing of the algebraic expressions.

Another, rather positive, consequence of adopting a broad and deep domain expertise

model was the development of an equally detailed student model. Instead of simply

keeping a percentage measure of the studentsô skill performance, the student model was

extended to keep full records of the interactions between the interface and the student for

each solution step.

This chapter describes the web-based intelligent MATHESIS Algebra Model

Tracing Tutor as well as the MATHESIS tutoring school for expanding and factoring

algebraic expressions. The school has been built around the MATHESIS algebra MTT

and has been extended with a learning management system (LMS). The rest of the

chapter is structured as follows: Section 2.2 describes the final version of the MATHESIS

algebra MTT with an extended domain model, a refined student model and a new

interface integrating the tutor into the school. Section 2.3 describes the learning

management system of the school, including an editor for teachers to create test papers

with their own exercises and tools to inspect the student model. Section 2.4 presents

related work. Section 2.5 presents an evaluation of the system while Section 2.6

concludes the chapter with a discussion of the research results and future directions of

research.

2.2 The MATHESIS Algebra Tutor

 31

2.2 THE MATHESIS ALGEBRA TUTOR6

The MATHESIS Model-Tracing Algebra Tutor was developed as a prototype

target tutor for the MATHESIS project (Sklavakis & Refanidis 2008; Sklavakis &

Refanidis 2013). The ultimate goal of the project is the development of authoring tools

for model-tracing tutors that will make extensive reuse of the valuable tutoring

knowledge through ontological engineering. The MATHESIS tutor itself was designed

with knowledge reuse as its main non-functional requirements. Consequently, the

architecture of the system should be based on open, standardized and modular

representations. Additionally, there were three more issues that determined the overall

architecture:

i. The tutor interface should be web-based in order to be broadly accessible.

ii. The model-tracing algorithm requires constant interaction between the cognitive

model and the interface. Therefore they should lie at the same side, that is, the

client side.

iii. The programming language(s) that would implement the various tutor parts

(interface, domain model) should be simple enough to be represented with an

ontology. This ontology would be used by the authoring tools to guide non-expert

authors in redeveloping the tutor.

The achievement of these requirements led to an implementation of the tutor

using HTML for the user interface and JavaScript for the domain expertise and tutoring

models. These two languages are the simplest ones for building dynamic, interactive web

pages, they are open, non-proprietary and lend themselves to direct representation and

manipulation from the developed MATHESIS authoring tools (Sklavakis & Refanidis

6 http://users.sch.gr/dsklavakis/mathesis/en/MATHESIS_Main_Frameset.htm

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 32

2010b; Sklavakis & Refanidis 2014). The user interface, shown in Figure 2.1, has four

main parts:

i. The messages area (top), where the tutor displays information about the interface

usage, as well as hints, help and feedback for correct and incorrect problem-

solving steps.

ii. The algebraic expression rewriting area (a), where the algebraic expression under

rewriting and its transformations are displayed.

iii. The studentôs answering area (b), where the student enters the answer for each

problem-solving step.

iv. The performed operation area (c), where intermediate results are shown for multi-

step algebraic operations.

Fig. 2.1. The MATHESIS Algebra Tutor Interface.

(a)

(b)

(c)

2.2 The MATHESIS Algebra Tutor

 33

The primary interface element is Design Scienceôs WebEq (now MathFlow) Input

Control applet, an editor for displaying and editing mathematical expressions in web

pages (Design Science 2011). There are three such Input Controls, i.e., the algebraic

expression, the answering space and the performed operation Input Controls (Figure 2.1).

The WebEq Input Control is scriptable through JavaScript and represents algebraic

expressions as MathML . So, during the problem solving process, the problem-solving

state as well as the student solution steps are represented via the open MathML standard

and, therefore, they can be interoperatable, i.e. inspectable, recordable and scriptable

(Murray 2003b). As a result, the tutor can be used in the following ways:

i. The student can type directly in the algebraic expression area algebraic

expressions using the math editing palette (Figure 2.1, area (a)). Then, he/she can

initialize the tutoring process by clicking the ñStart Exerciseò button.

ii. The student can select an exercise from a test paper created by a teacher through

the Learning Management System (Section 2.3) and then initialize the tutor.

iii. The tutor can be initialized (opened) from any other e-learning program with the

desired algebraic expression.

iv. The tutor can recursively initialize (open) new instances of itself in order to break

down more complex tutoring tasks.

This latter possibility is directly related to the issues of knowledge re-use and

ñscaling-upò. The mathematical skill of factoring by term grouping is rather complex. In

this factoring method (a) the terms of the expression must be separated into groups, (b)

each group must be factored by some factoring method and (c) the resulting products

must have a common factor. It is step (c) that makes step (a) and the whole method

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 34

complex and raises the issues of knowledge re-use and ñscaling-upò. The intelligent task

recognition of the MATHESIS tutor does not yet support guidance for the first step and

therefore term grouping is not yet part of its domain model. However, provision has been

made for steps (b) and (c). As an example, letôs consider factoring the expression

ὼ ρ ὼ ὼ by grouping its terms: the first group, ὼ ρ, must be factored using

the identity ὥ ὦ ὥ ὦ ὥ ὦ, yielding ὼ ρ ὼ ρ; the second group,

ὼ ὼ, must be factored by common factor, yielding ὼὼ ρ. To guide the student in

applying different factoring methods, the tutor can open an instance of itself with the

expression ὼ ρ for the first group followed by an instance for expression ὼ ὼ. Each

instance of the tutor can guide the student in factoring each group as separate problems

and then return the factored expression to the parent tutor, thus yielding ὼ ρ ὼ

ρ ὼὼ ρ. From this point, the parent tutor will guide the student in applying the

common factor method, yielding ὼ ρ ὼ ρ ὼ. Thus, the factoring methods

supported by the tutor can be re-used in a completely new and complex factoring task,

term grouping.

2.2.1 The Tutorôs Domain Expertise Model

The development of the domain expertise model was based on deep cognitive task

analysis in the paradigm of Carnegie-Mellonôs cognitive tutors (Anderson et al. 1995).

The tutor can teach a breadth of 16 top-level cognitive math skills:

¶ Monomial multiplication

¶ Monomial division

¶ Powers of monomials

¶ Monomial-polynomial multiplication

2.2 The MATHESIS Algebra Tutor

 35

¶ Polynomial multiplication

¶ Elimination of parentheses

¶ Collection of like terms

¶ Identities expansion: square of sum, square of difference, product of sum by

difference, cube of sum and cube of difference

¶ Factoring: common factor, identities, quadratic form

Each one of these top-level math skills is further analyzed in more detailed sub-

skills leading to a fine grained domain model of 104 primitive math skills (see Appendix

A). Part of this broad and deep domain model is given in the following list:

1. Monomial multiplication: σØÙϽ τØÚ ρςØÙÚ

1.1. Multiply coefficients: σϽ τ ρς

1.2. Multiply main parts:

1.2.1. Add exponents of common variables: ὼϽὼ ὼ ὼ

1.2.2. Copy exponents of single variables: ώϽᾀ ώᾀ

2. Monomial division: τØÚ

2.1. Divide coefficients: ρςȡσ τ

2.2. Divide main parts:

2.2.1. Subtract exponents of common variables: ὼȡὼ ὼ

ὼ ὥὲὨ ώȡώ ώ ώ ρ

2.2.2. Copy exponents of single variables: ᾀ ᾀ

3. Collection of like terms: ςὼώ ὼ χὼώ φὼ ωὼώ υὼ

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 36

3.1. Find groups of identical terms: ςὼώ χὼώ ὥὲὨὼ φὼ

3.2. Add the coefficients of each group: ς χ ω ὥὲὨρ φ υ

3.3. Keep the main part of each group: ςὼώ χὼώ ωὼώ ὥὲὨὼ φὼ υὼ

4. Monomial power: ςὼώᾀ ψὼώᾀ

4.1. Raise the coefficient to the power: ς ψ

4.2. Raise main part to the exponent:

4.2.1. Multiply the exponents: ØÙÚ ØϽÙϽÚϽ ØÙÚ

5. Monomial by polynomial multiplication: σὼώϽςὼ ώᾀ φὼώ σὼώᾀ

5.1. Identify the monomial terms of the polynomial: ςØ ÁÎÄÙÚ

5.2. Multiply each one of them with the monomial:

σὼώϽςὼ φὼώ ὥὲὨ σὼώϽ ώᾀ σὼώᾀ

6. Polynomial by polynomial multiplication:

σὼώ ςὼ Ͻςὼώ τὼώ φὼώ ρςὼώ τὼώ ψὼώ

6.1. Identify the monomial terms of the first polynomial: σØÙ ÁÎÄςØ

6.2. Identify the monomial terms of the second polynomial: ςὼώ ὥὲὨτὼώ

6.3. Multiply each term of the first monomial with each term of the second

monomial: σὼώϽςὼώ φὼώ ὥὲὨ σὼώϽ τὼώ ρςὼώ ὥὲὨ ςὼϽ

ςὼώ τὼώ ὥὲὨ ςὼϽ τὼώ ψὼώ

7. Elimination of parentheses:

υὼ ψὼώ σ ὼ τὼώ υ

υὼ ψὼώ σ ὼ τὼώ υ

τὼ ρςὼώ ψ

2.2 The MATHESIS Algebra Tutor

 37

7.1. Keep the sign of each parenthesized term if the sign in front of the parenthesis is

a plus (+): υØ ψØÙσ υØ ψØÙσ

7.2. Change the sign of each parenthesized term if the sign in front of the parenthesis

is a minus (-): ὼ τὼώ υ ὼ τὼώ υ

7.3. Collect like terms if there are any: υὼ ψὼώ σ ὼ τὼώ υ τὼ

ρςὼώ ψ

8. Identity expansion: ςὼ σ τὼ ρςὼ ω

8.1. Recall the expanded form of the identity: Á Â Á ςÁÂÂ

8.2. Substitute a and b for the real terms: Á ςØ ÁÎÄ Â σ

8.3. Take care for parenthesized terms: ςØσ ςØ ςϽςØϽσ σ

8.4. Perform monomial multiplications and powers: ςØ ςϽςØϽσ σ τØ

ρςØω

9. Factoring by common factor: ςὼ τὼ φὼώ ςὼ ὼ ς σώ

9.1. Find the common factor: ςØ

9.1.1. Find the GCD of the coefficients: '#$ςȟτȟφ=2

9.1.2. Find the GCD of common variables: '#$ØȟØȟØ Ø

9.2. Divide terms by the common factor:

ςØ

ςØ
Ø ÁÎÄ

τØ

ςØ
ς ÁÎÄ

φØÙ

ςØ
σÙ

10. Factoring the quadratic formȡ

ὼ Ὓὼὖ ὼ ὥ ὼ ὦȟὥϽὦ ὖ ὥὲὨ ὥ ὦ Ὓ:

ὼ υὼ φ ὼ ς ὼ σ

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 38

10.1. Identify ὖ ὥϽὦ ὥὲὨ Ὓ ὥ ὦ : ὖ φ ὥὲὨ Ὓ υ

10.2. Find the pairs of integers a, b that have a product of ὖ φḊ

ρϽφ φ έὶ ρϽ φ φ έὶ ςϽσ φ έὶ ςϽ σ φ

10.3. Find the pair a, b that gives a sum of Ὓ υḊ ς σ υ

10.4. Write the factored form: ὼ ὥ ὼ ὦ ὼ ς ὼ σ

The main reason for developing such a broad and deep domain expertise model

was the investigation and confrontation of the scaling-up problem: despite the success of

model-tracing tutors, in the majority of implementations, the tutor teaches a very

elementary (low level) cognitive skill in isolation (Aleven, McLaren & Sewall 2009).

However, even in school textbooks, medium difficulty exercises demand the application

of a multitude of composite (top-level) cognitive skills in combination with each other.

Their solutions demand the application of more high-level skills, like the identification

and decomposition of the top level skills that appear in the exercise.

Table 2.1. Expanding ρπὼ ρ ὼ ρ in three different ways

Operation Result

A1. Monomial-polynomial multiplication

A2. Polynomial multiplication

A3. Collection of like terms

ρπὼ ρ ὼ ρ

ρπὼ ρπὼ ρ

ρπὼ ρπὼ ρπὼ ρπ

ρπὼ ρπ

B1. Polynomial multiplication

B2. Monomial-polynomial multiplication

B3. Collection of like terms

ρπὼ ρ ὼ ρ

ρπὼ ὼ ὼ ρ

ρπὼ ρπὼ ρπὼ ρπ

ρπὼ ρπ

2.2 The MATHESIS Algebra Tutor

 39

C1. Identity ()() 2 2
a b a b a b+ - = -

C2. Monomial-polynomial multiplication

ρπὼ ρ ὼ ρ

ρπὼ ρ

ρπὼ ρπ

To illustrate this situation, consider the algebraic expression ὼ σ

ρπὼ ρ ὼ ρ. In order to expand this expression, the student must first identify the

operations that must be performed: a square of difference ὼ σ , and a multiplication

with three factors ρπὼ ρ ὼ ρ. Especially for the multiplication, the student can

perform it in three different ways, described in Table 2.1.

So, it becomes clear that, even for a simple expansion exercise like the one in

Table 2.1, a broad and deep domain expertise model containing all the potential skills is

needed. In addition, intelligent recognition of the operations that are present in the

expression is needed, whereas this is also a new cognitive skill that the tutor must be able

to teach.

2.2.2 Intelligent Task Recognition

The key issue for tackling the scaling-up problem is the recognition by the tutor of

the task(s) that must be performed, as well as of those entered by the student in order to

match them, so as to provide guidance and feedback in each step of the tutoring process.

In the MATHESIS tutor, these problems are tackled by parsing the MathML

representation of the algebraic expressions and generating multiple internal

representations. To illustrate how this is done, the algebraic expression τὼὼ χ τψ

will be used:

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 40

1. The tutor gets a tree representation of the expressionôs MathML presentation,

analogous to the Document Object Model (DOM) of HTML. This is provided by

the Input Control applet (Figure 2.1) through JavaScript scripting. In this

MathML DOM tree, every element of the algebraic expression is represented as a

node.

Fig. 2.2. MathML Presentation code for expression τὼz ὼ χ τψ before and after intelligent

task recognition

2. This MathML DOM tree is parsed using special methods provided by the Input

Control. Each element of the expression (node) is given a unique identification

string (id), which is used in the internal representations of the expression to

uniquely identify each element (Figure 2.2). At the same time, the ñatomicò

elements such as numbers, variables and operation symbols are grouped in

MathML Presentation code for expression

τὼz ὼ χ τψ without IDs

MathML Presentation code for

expression τὼz ὼ χ τψ with IDs

<math>

 <mrow>

 <mrow>

 <mn>4</mn>

 <mi>x</mi>

 <mo>*</mo>

 <mo>(</mo>

 <mi>x</mi>

 <mo>+</mo>

 <mn>7</mn>

 <mo>)</mo>

 <mo>+</mo>

 <mn>48</mn>

 </mrow>

 </mrow>

</math>

<math>

 <mrow id='1'>

 <mrow id='1.1'>

 <mn id='1.1.1'>4</mn>

 <mi id='1.1.2'>x</mi>

 <mo id='1.1.3'>*</mo>

 <mo id='1.1.4'>(</mo>

 <mi id='1.1.5'>x</mi>

 <mo id='1.1.6'>+</mo>

 <mn id='1.1.7'>7</mn>

 <mo id='1.1.8'>)</mo>

 <mo id='1.1.9'>+</mo>

 <mn id='1.1.10'>48</mn>

 </mrow>

 </mrow>

</math>

2.2 The MATHESIS Algebra Tutor

 41

mathematical objects like monomials and polynomials. These are represented

using custom JavaScript objects, and they also get unique identification strings.

For each monomial, its coefficient, variables and their exponents are kept along

with their unique identification numbers. For each polynomial, its monomial

terms are kept. In the case of expression τὼὼ χ τψ, four monomials are

created, 4x, x, 7 and 48, as well as a polynomial, x+7, having as its terms the

monomials x and 7 (.

ParsedMonomial Monomial_1 Monomial_2 Monomial_3 Monomial_4

Coefficient 4 1 7 48

Variables [x] [x] [] []

Exponents [1] [1] [] []

idString ñ1.1.1ò ñ1.1.5ò ñ1.1.7ò ñ1.1.10ò

signID ñò ñò ñ1.1.6ò ñ1.1.9ò

coefficientID ñ1.1.1ò ñò ñ1.1.7ò ñ1.1.9ò

variablesID [ñ1.1.2ò] [ñ1.1.5ò] [] []

exponentsID [ñò] [ñò] [] []

Polynomial_1 {

monomials = [Monomial_2, Monomial_3],

exponent = 1

}

SumTerms {

 SumTerm_1 {

 Factors = [Monomial_1, Polynomial_1]

 }

 SumTerm_2 {

 Factors = [Monomial_4]

 }

}

allowedOperations = [ñ1.1.3ò, ñ1.1.6ò]

allowedOperads = [[Monomial_1, Polynomial_1], [Monomial_2, Monomial_3]]

Fig. 2.3 Mathematical objects created by intelligent task recognition for expression
τὼz ὼ χ τψ

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 42

3. Identifying each operationsô precedence is a key top-level skill for the expansion

and factoring of algebraic expressions. As it will be explained in the next

subsection, the tutor teaches students the correct order of operations.

Consequently, the intelligent parsing mechanism extracts this information from

the algebraic expression and represents it appropriately.

4. Finally, using the precedence of operations, the expression is represented as a sum

of products using JavaScript arrays. The expression τὼὼ χ τψ is

represented as a sum array of two product arrays, τὼὼ χ and τψ. The first

product array has two factors, monomial τὼ and polynomial ὼ χ, while the

second product array has only one monomial, τψ.

All this information is extracted and represented for the expression to be rewritten

(Figure 2.3). When the student selects a part (or the whole) of the expression, this part is

parsed again and the same information is extracted and represented by the tutor; however,

now the parser does not assign identification strings to the elements of the selected

expression but just gets the ones assigned by the original parsing of the expression. As a

result, the tutor can identify exactly which part of the expression is selected, which

operations are selected and whether they have the right precedence to be performed.

Moreover, when the student suggests what kind of operation he/she has selected, the tutor

can check whether this suggestion is correct. For example, in expression τὼὼ χ τψ,

if the student selects τὼὼ χ and proposes ñCommon Factorò, the tutor checks its

internal representation and sees that the selected (sub)expression is not a sum and

therefore it canôt be factored. If the student selects the whole expression, the tutor sees

that the expression is a sum with two terms and only then tries to extract a common

factor. If it finds one, it proceeds by asking the student to give the common factor.

2.2 The MATHESIS Algebra Tutor

 43

Otherwise, the student is given feedback that no common factor exists. Moreover, the

tutor checks that the student has selected the whole expression, since there is no point in

getting a common factor of part of an expression.

This approach, with exhaustive and multiple representations of the algebraic

expressions allows the tutor to handle even more subtle conditions like dealing with the

commutative properties of addition (ὼ ώ ώ ὼ) and multiplication (ὼϽώ ώϽὼ). In

practice, the commutative property means that in a sum or product, the order of the terms

is not important. By representing the algebraic expressions as a sum of products, the

MATHESIS tutor can easily check student answers that are sums or products. Thus,

when expanding the expression ὼ ώ , the tutor can accept as a correct answer any of

the expressions ὼ ςὼώ ώ, ώ ςὼώ ὼ, ὼ ςώὼ ώ and ὼ ώ

ςώὼ. Moreover, it can detect if a term is missing or is wrong and give the appropriate

feedback. This performance is achieved by JavaScript functions that compare the sum

and product arrays.

The overall result of this intelligent parsing is that the tutor can handle any

algebraic expression that contains the math tasks (operations) described in the previous

section. Therefore, the student can type any such expression and the MATHESIS tutor

will parse it, detect which tasks are contained in it and guide the student appropriately.

This feature is called intelligent task recognition. It is this feature combined with the

broad and deep domain model that deals directly with the scaling-up problem: the

MATHESIS tutor can handle any algebraic expression containing any combination of the

math tasks described in the previous section. Thus, the MATHESIS tutor can guide a

student in expanding expressions like ςὼ σ ςςὼ σ ςὼ σ ςὼ σ or

factor expressions like τὼ ρ ωὼ ς .

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 44

2.2.3 The Tutoring Model: Deep Model Tracing With Intelligent Task Recognition

Equipped with such a detailed cognitive model, the MATHESIS tutor is able to

exhibit expert human-like performance. The tutor makes all the cognitive tasks explicit to

the student through the structure of the interface. The whole process is described below

using as an example a real student interaction with the tutor for factoring the algebraic

expression τὼz ὼ χ τψ:

1. The student enters the algebraic expression in one of the ways described in

Section 2.2.

2. The student starts the tutor by clicking ñStart Exerciseò, the tutor analyses the

expression and recognizes the operations and their operands. As a result, the tutor

displays an abstract representation of the algebraic expression, where each

monomial in the expression has been substituted by an ñmò. Thus, the algebraic

expression τὼz ὼ χ τψ

is represented as m * (m + m) + m (Figure 2.1,

Student Answering area). The purpose of this intelligent task recognition feature

is to help the student understand the operations present in the expression through

a visual, simplified and compact representation of the algebraic expression. It was

realized that the use of letter ñmò for representing a monomial could confuse the

students, since this letter is normally used in mathematics to represent a variable.

To avoid any such misconception, pen and paper exercises were given to the

students, before using the system, where they had to transform algebraic

expressions to the tutorôs ñmò letter representation (this is a common practice

followed by human tutors). After a few exercices, all students, even the weakest

ones, were able to correctly perform this transformation. On the other hand,

alternative representations were considered. For example, one of them was to use

2.2 The MATHESIS Algebra Tutor

 45

empty squares instead of ñmò; however, it was abandoned as an option because a

square symbol was used by the MATHESIS tutor to provide templates that guide

student input (see step 4, below). Using a tree representation of the algebraic

expression was also considered. However, in pen and paper exercises, where

students were asked to transform between natural and tree representation,

significant cognitive load and confusion were observed.

3. The student selects a part (or the whole) of the expression and then chooses from

a drop-down list the operation that he/she believes corresponds to that part. In

Figure 2.4 the student selected the whole expression τὼz ὼ χ τψ

(highlighted) and the operation ñFACTORING ï Common Factorò from the drop-

down list. It must be noted that this tutoring step is not part of the ñtraditionalò

tutoring practice in the Greek educational system and, to the best of the authorôs

knowledge, in many other educational systems. However, based on the authorôs

personal tutoring experience, this step is considered to be crucial and constitutes

what is known in expert systems as an expertôs blind spot. Math teachers tend to

believe that once students have been taught and practiced each operation

separately, they are able to recognize and perform them when they appear in more

complicated algebraic expressions. The authorôs personal tutoring experience

suggests that quite often students donôt know what to do because they cannot

recognize which operations are present and the human tutor has to guide them in

analyzing the expression under consideration. It is this step, in combination with

the abstract representation of the algebraic expression presented in the previous

step, that makes the analysis of the algebraic expression explicit to the student.

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 46

Fig. 2.4. The student proposes the operation ñFACTORING-Common Factorò from the

drop-down list of supported operations to be applied to the selected

expression.

4. The tutor, based on the results of the intelligent task recognition (step 2), confirms

and continues or informs the student that the suggested operation is not correct. In

Figure 2.5, the suggested operation, ñCommon Factorò, is correct; the tutor

confirms that with an appropriate message and starts guiding the student to

perform the operation in a step-by-step manner (Figure 2.5, top, messages 2.1 and

2.2).

2.2 The MATHESIS Algebra Tutor

 47

Fig. 2.5. The tutor checks and confirms the studentôs suggested operation ñCommon

Factorò through messages 2.1 and 2.2 (top). The common factor under

question here is 4, denoted by the empty square scaffold in the

ñANSWERING SPACEò area (bottom right).

The tutor also knows that the common factor for the expression τὼz ὼ χ

τψ is the greatest common divisor of 4 and 48, that is, 4. The authorôs personal

tutoring experience suggests that most students have considerable difficulties in

finding the common factor. For this reason, the tutor displays in the studentôs

answering area a visual scaffold of the common factorôs form. Here, the common

factor is only a number, denoted by a single square (Figure 2.5, bottom right). The

tutor also displays a message that explains the meaning of the scaffold (Figure

2.5, top, message 2.2). It must be noted that the tutor supports two other kinds of

common factors: variables with exponents, denoted as Ǐ
Ǐ

and parentheses with

exponents, denoted as (Ǐ)
Ǐ
.

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 48

Fig. 2.6. The tutor confirms the entered common factor and asks for the first quotient by

messages 2.3 and 2.4 (top). The quotient under question is
ᶻ

ὼz

ὼ χ denoted by the Ǐ
Ǐ
 *(Ǐ)

Ǐ
 scaffold in the ñANSWERING SPACEò

area (right).

5. The student correctly enters 4 in the position indicated ñANSWERING SPACEò

as the common factor and clicks the ñCheck Operationò button. The tutor

performs intelligent parsing on the studentôs answer and confirms that it is correct

(Figure 2.6, top, message 2.3). The tutor also displays the common factor

followed by a multiplication symbol, 4*, in the ñPERFORMED OPERATIONò

area (Figure 2.6, bottom right). The purpose of this area is to display the steps that

have been performed in multi-step math skills. Now, the student must divide each

one of the terms of the sum, i.e. τὼz ὼ χ and 48, by the common factor. The

first quotient that the student must calculate is
ᶻ

ὼz ὼ χ. The tutor

displays the quotient and a visual scaffold of the expected answer in the

ñANSWERING SPACEò area (Figure 2.6, right). The visual scaffold is Ǐ
Ǐ

*(Ǐ)
Ǐ

denoting the expected answer ὼᶻὼ χ .

2.2 The MATHESIS Algebra Tutor

 49

6. The student enters in the squares of the visual scaffold Ǐ
Ǐ

*(Ǐ)
Ǐ
 the correct

answer, ὼᶻὼ χ and clicks the ñCheck Operationò button. Once again, the

tutor performs intelligent parsing on the studentôs answer and confirms that it is

correct (Figure 2.7, top, message 2.7). The tutor also displays the expression

τz ὼz ὼ χ in the ñPERFORMED OPERATIONò area (Figure 2.7, bottom

right) to denote the progress of the factoring process. The second quotient that the

student must calculate is ρς. The tutor displays the quotient and a visual

scaffold of the expected answer in the ñANSWERING SPACEò area (Figure 2.7,

right). The visual scaffold is Ǐ

denoting the expected answer 12.

Fig. 2.7. The tutor confirms the first quotient and asks for the second quotient through

messages 2.7 and 2.8 (top). The quotient under question is ρς denoted

by the empty square scaffold in the ñANSWERING SPACEò area (right).

7. As soon as the student correctly enters the second quotient, the tutor displays a

confirmation message (Figure 2.8, top, messages 2.10 and 2.11), rewrites the

expression τz ὼz ὼ χ ρς, parses the rewritten expression, displays its

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 50

abstract representation and prompts the student to perform the next operation, as

shown in Figure 2.8.

Fig. 2.8. Successful completion of the common factor method in expression τὼz
ὼ χ τψ.

8. The student now selects ὼz ὼ χ and performs monomialïpolynomial

multiplication. Once more the tutor exhibits its deep model tracing behavior and

guides the student step-by-step to perform the two monomial multiplications,

ὼz ὼ and ὼz χ yielding ὼ χὼ. The result of this operation is shown in Figure

2.9.

2.2 The MATHESIS Algebra Tutor

 51

Fig. 2.9. Successful completion of the monomial-polynomial multiplication ὼz ὼ χ.

9. The student selects ὼ χὼ ρς and performs factoring of the quadratic form

ὼ Ὓὼὖ (trinomial). In order to achieve this, the student must find two

integers a and b, such that ὥϽὦ ὖ ρς and ὥ ὦ Ὓ χ. The tutor,

tracing its deep math domain model, guides the student in detail. First, the tutor

prompts the student to identify ὥϽὦ ὥὲὨ ὥ ὦ (Figure 2.10, top, message 6.2)

and displays the corresponding scaffold in the ñANSWERING SPACEò (Figure

2.10, right). The student correctly enters 12 and 7 for ὥϽὦ ὥὲὨ ὥ ὦ

correspondingly (not shown in Figure 2.10).

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 52

Fig. 2.10. First step of factoring ὼ χὼ ρς. The student must identify ὥϽὦ ὖ
ρς and ὥ ὦ Ὓ χ.

10. The student now has to discover that a=3 and b=4. The student enters the

incorrect answer a=2 and b=6 (this step is not shown). The tutor displays an error

message and suggests the possible pairs of values for a and b (Figure 2.11, top,

message 6.4), asking again for the values of a and b (Figure 2.11, right)). It must

be noted that, for each one of the supported elementary skills, the model contains

possible mistakes that the student might make. Each mistake is associated with

error messages of varying depth, ranging from general suggestions down to the

correct answer for the subtask. The depth and order of these messages are preset.

2.2 The MATHESIS Algebra Tutor

 53

Fig. 2.11. Responding to a student error. The tutor displays an error message, gives help (top,

message 6.4) and asks for the correct answer (right).

Fig. 2.12. Successful completion of factoring τὼz ὼ χ τψ.

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 54

11. The student now enters the correct answer, a=3 and b=4 (not shown). The tutor

checks the answer, confirms and rewrites the expression, yielding τz ὼ σᶻ

ὼ τ . The factoring of τὼz ὼ χ τψ

is now successfully completed

(Figure 2.12).

Once again, the scaling-up problem appears. The student could have followed a

completely different solution path for factoring τὼz ὼ χ τψ. The MATHESIS

Algebra Tutor, based on its broad and deep expertise model as well as on the intelligent

task recognition feature, is able to recognize this path and guide the student along.

Table 2.2 presents an alternative path in the solution space tree, involving only the

top-level math skills (algebraic operations) the student could have followed and not the

actual interaction with the tutor. As shown before, each one of these operations is a

complex task that must be performed in a series of steps. The calculation of the quotient

ᶻ
ὼz ὼ χ presented in step 5 (Figure 2.6) demanded the development of a

model for calculating quotients of arbitrary complexity, like, e.g., .

Equally complex is the task of finding two integers with a given product and sum, like

the task presented in steps 9-11. As a consequence, if someone tried to draw the solution

space tree for the factoring of expression τὼz ὼ χ τψ it would end up with a tree

of considerable breadth and depth. The fine-grained modelling of each top level math

skill (algebraic operation) and its sub-skills in conjunction with the intelligent task

recognition described in the previous section, allows the MATHESIS Algebra tutor to

guide the student throughout this broad and deep solution space. Thus, this feature is

called deep model tracing.

2.2 The MATHESIS Algebra Tutor

 55

Table 2.2. Alternative Path for Factoring τὼz ὼ χ τψ

Operation Result

Initial expression

1. Monomial-polynomial multiplication

2. Common Factor

3. Factor
2

x Sx P+ +

τὼz ὼ χ τψ

τὼ ςψὼ τψ

τὼ χὼ ρς

τὼ σ ὼ χ

2.2.4 The Student Model

Based on the breadth and depth of its math domain expertise model, the tutor

creates and maintains in a database a deep and broad student model. For every step of the

studentôs attempted solution, the tutor records the following information:

¶ Skill: The algebraic operation that the student tried to perform in the specific step,

e.g., ñcommon factor calculationò.

¶ Expression: The algebraic expression on which the algebraic operation was

performed, like τὼz ὼ χ τψ.

¶ Answer: The answer given by the student, for example τὼ Ȣ

¶ Correct: It signifies whether the answer was right (1) or wrong (-1).

¶ Timestamp: The date and time the step was performed.

This information is presented in a table, with one row for each solution step. The

table for factoring the expression τὼz ὼ χ τψ is shown in Table 2.3. Rows with

dark background emphasize incorrect steps. Both students and their teachers can see this

tabular representation of the studentôs solution steps.

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 56

Table 2.3. The Fine-Grained Student Model: Solution Steps

Skill Expression Answer Correct

Automatic expression

rewriting
τὼz ὼ χ τψ

(this step is performed

by the tutor)
1

Recognise the existence of a

common factor
τὼz ὼ χ τψ Common factor 1

Calculate common factor τὼz ὼ χ τψ 4 1

Calculate the quotient of a

term over the common factor

τὼz ὼ χ

τ
 ὼz ὼ χ 1

Calculate the quotient of a

term over the common factor

τψ

τ
 ρς 1

Automatic expression

rewriting

τὼz ὼ χ τψ

τz ὼz ὼ χ ρς
(this step is performed

by the tutor)
1

Recognise a monomial by

polynomial multiplication
ὼz ὼ χ

monomial by

polynomial

multiplication

1

Monomial multiplication ὼz ὼ ὼ 1

Monomial multiplication ὼz χ χὼ 1

Monomial by polynomial

multiplication
ὼz ὼ χ ὼ χὼ 1

Automatic expression

rewriting

τz ὼz ὼ χ ρς

τz ὼ χὼ ρς
(this step is performed

by the tutor)
1

Recognise trinomial ὼ χὼ ρς Trinomial 1

Identify a and b ὥϽὦ ρςȟὥ ὦ χ
ὥ ς
ὦ φ

 -1

Identify a and b ὥϽὦ ρςȟὥ ὦ χ
ὥ σ
ὦ τ

 1

Automatic expression

rewriting

τz ὼ χὼ ρς

τz ὼ σᶻὼ τ

(this step is performed

by the tutor)
1

In addition, the tutor can display statistics over a selected period of time about a

specific cognitive skill, as shown in Figure 2.13. When a specific skill is selected, a table

presenting the performance of the skill is displayed (Table 2.4).

It becomes obvious that such a detailed and time-stamped student model creates a

digital timeline of the studentôs math skill mastery over time, with a number of possible

uses: long term progress assessment, recent mastery status, automatic selection of

exercises based on the studentôs weaknesses. The latter is not yet implemented in the

system.

2.3 The Learning Management System

 57

Fig. 2.13. The Student Model: Skill Performance Statistics

Table 2.4. Performance of skill ñCalculate common factorò. The percentage is 2/4=50%

Operation Exression Answer Correct Date

Calculate common factor τὼz ὼ χ τψ 4 1 27-02-2011 16:55:33

Calculate common factor τὼz ὼ χ τψ 4 1 22-02-2011 18:26:07

Calculate common factor τὼz ὼ χ τψ τὼ -1 22-02-2011 18:26:02

Calculate common factor τὼz ὼ χ τψ τὼ -1 22-02-2011 18:19:53

2.3 THE LEARNING MANAGEMENT SYSTEM

The MATHESIS Intelligent Algebra Tutoring School is accessible through a web

interface7. Each user gets a unique Username and Password. Users can register either as

teachers or students. Students are guided to the MATHESIS Algebra Tutor interface

(Figure 2.1), where they solve their assigned exercises as it was described in Section

2.2.3. Teachers are taken to the Teacher Menu (Figure 2.14), which provides links for the

following managerial tasks:

7 http://users.sch.gr/dsklavakis

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 58

Fig. 2.14. The Teachersô Menu

¶ Classes: Teachers can create classes. For each class the teacher enters the real

school, grade and name of the class. Students are registered to the class by their

Usernames. That means that the students must be already registered in the system.

Students can also be deleted from a class. (Figure 2.15).

Fig. 2.15. The Classes Management Page.

¶ Test Papers: The system provides an online HTML editor for the creation and

editing of test papers (Figure 2.16). For each test paper the teacher enters the type

of school, grade, book, chapter and section of a textbook that the contained

exercises correspond to. Each test paper is also characterized as public or private

(Figure 2.16a). Public test papers can be accessed and used (but not modified)

2.3 The Learning Management System

 59

from any teacher registered in the system, while private ones can be used and

edited only by their creator. Test papers are used for the assignment of exercises

to students. Currently, the system provides five public test papers that contain

exercises from the official textbook that is taught in the 3rd grade of Gymnasium

(junior high school) in secondary education in Greece. Each test paper is an

HTML page. Conceptually, each paper is organized as a set of exercises

containing one or more questions. For each exercise, its questions are laid out in

rows and columns using HTML tables. The author inserts new exercises by

defining how many questions they contain and in how many rows and columns

they will be arranged, using the ñInsert Exerciseò button and the corresponding

fields (Figure 2.16, left, below the editor). The system creates the appropriate

HTML code for the table and displays it in the editing area. It also generates

check boxes with unique identification strings in front of the exercise and each of

its questions (Figure 2.16b). These check boxes are used later for selecting and

assigning exercises (Figure 2.17). The author adds any text for describing the

exercise and its questions. In Figure 2.16, exercise 22 has just been added,

containing 3 questions, arranged in one row and three columns, labeled by the

author as óa)ô, ób)ô and óc)ô (Figure 2.16b). Finally, for each question, the author

enters the algebraic expression using a WebEq Input Control. In Figure 2.16, the

author has just entered the expression τὼz ὼ χ τψ in question (a) of

exercise 22 (Figure 2.16c). The system displays on the right side of the editor the

test paper as an HTML page, using the MathML viewer MathPlayer to display

properly the mathematical expressions (Figure 2.16d). The HTML code of each

test paper is saved in a database, together with the papersô information, and can be

recalled and edited any time by changing, adding or deleting exercises. It must be

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 60

noted that, due to the intelligent task recognition feature of the tutor, the authors

do not have to annotate or describe any solution steps for the questions.

Fig. 2.16. Test Paper Editing. The author has just created exercise no. 22 using the HTML editor

(b) and inserted expression τὼz ὼ χ τψ for the first question using the math

editor (c). The paper is shown on the right with the newly added exercise at the

bottom (d).

¶ Exercise assignment: The system provides tools for individualized assignment of

exercises. The teacher can assign different exercises to different students,

according to their performance. The assignment process is simple: The teacher

selects a class and any student(s) from this class as well as a test paper and any

exercise(s) from it. By checking the appropriate boxes, the selected exercise(s) are

assigned to the selected student(s) (Figure 2.17).

(a)

(b)

(c)
(d)

2.3 The Learning Management System

 61

Fig. 2.17. Individualized Assignment of Exercises to Students.

¶ Student assessment: The solution steps taken by a student are recorded in the

database and statistics are computed about the correct/incorrect performance of

operations. These steps and statistics can be retrieved and viewed by the teacher.

On the left side of Figure 2.18, the teacher selects the time interval for which

he/she wants to assess the student(s). He/She opens a classroom and selects a

student. The system displays in a drop down list all the test papers containing

exercises that were assigned to the student during the selected time period. The

teacher selects a test paper and its contents are displayed (Figure 2.18, right).

Assigned exercises for which no solution was attempted by the student are

marked in a red background. In Figure 2.18, these are questions 13a) σὼ ςτ

and 15a) ὼ ςὼ ρ located in the middle of the test paper (red color appears as

dark grey in grayscale). Those with at least one attempted solution, either correct

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 62

or wrong, are marked with green background. In Figure 2.18 this is question 21a)

ςύ ρπύ ψ (green color appears as light grey in grayscale).

Fig. 2.18. Student Assessment: Selecting a Solved Exercise

By selecting an exercise and clicking the ñSelect Exerciseò button, the attempted

solution steps are displayed as shown in Table 2.3. The teacher can also select a

specific math skill from the drop-down list on the lower left part of Figure 2.18.

As mentioned in Section 2.2.3, the list displays all skills performed by the student

with their corresponding percentage of correct performances during the selected

time period, as shown in Figure 2.13. By selecting a specific skill, a table of the

skill performances taken into account is displayed (Table 2.4).

Questions 13a and 15a

with no attempted

solution marked in red

Question 21a with an attempted

solution marked in green

 63

2.4 RELATED WORK

The development of the domain expertise and the implementation of the model-

tracing tutoring model in model-tracing tutors are so demanding in time and human

resources (Aleven et al. 2006) that these tutors are currently developed by specialised

research teams, they are usually experimental prototypes and they are used in strictly

controlled and supervised educational settings, mainly in universities (VanLehn 2006).

The most successful and widely used math MTTs are Cognitive Tutors developed by

Carnegie Learning8, based on more than twenty years of cognitive science research at

CMU (Koedinger & Corbett 2006). Cognitive Tutors are now an integral part of complete

curricula used in hundreds of middle and high schools throughout the United States.

However, despite their innovative nature and practical success, Cognitive Tutors are

commercial products that have to adapt to very strict guidelines and educational goals of

the US educational system. They have to follow the textbook by teaching specific

exercises that train the students in specific cognitive skills. In the case of algebraic

expressionsô operations, they teach each operation separately and not in combinations

with each other. They also teach a fixed set of exercises where all the anticipated solution

steps are pre-computed by solving the problem in all acceptable ways by running a rule-

based problem-solver (Van Lehn 2006). Therefore, these tutors do not tackle the problem

of parsing an arbitrary algebraic expression, identifying the existence of any possible

combination of operations and their precedence and following the student in any possible

8 www.carnegielearning.com

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 64

correct path of the solution space tree. In other words, they are not designed to deal with

the scaling-up problem (Aleven, McLaren, & Sewall, 2009).

Another kind of pseudo-MTTs is the example-tracing tutors (Aleven, McLaren,

Sewall, & Koedinger, 2009) under development at Carnegie Mellon University. There are

two websites that provide example-tracing tutors for middle-school mathematics: the

Mathtutor
9
 website (Aleven, McLaren, & Sewall, 2009) and the Assistments10 website

(Razzaq, Feng, Nuzzo-Jones, Heffernan, Koedinger, Junker et al. 2005). Example-tracing

tutors have a very narrow and shallow, exercise-specific, domain expertise model. They

offer considerable reduction in development time but are even further away from dealing

with the scaling-up issue.

ActiveMath
7
 is another web-based intelligent tutoring system for mathematics

(Melis, Andr¯s, BǸdenbender, Frischauf, Goguadze, Libbrecht et al. 2001). The systems

aims mainly for adaptive guidance and presentation of mathematical content based on

ontological representation of mathematical concepts, learning goals and acquired

knowledge. However, when it comes to problem-solving skills, ActiveMath offers mainly

multiple choice questions and some more interactive exercises. In these, the system does

not guide the student along a solution path. It uses the external Computer Algebra

Systems (CAS) to simply check the correctness of the studentôs solution. Therefore, the

system completely avoids the hard problems of model tracing, that is, generating the

correct solution(s) at each step, comparing the studentsô input, recognising errors and

providing feedback.

9 https://mathtutor.web.cmu.edu/
10 www.assistments.org
7 www.activemath.org
8 www.aplusix.com

http://www.activemath.org/

2.4 Related Work

 65

Aplusix
8
 is an Algebra Learning Assistant. After several years of research

(Nicaud, Bouhineau, & Chaachoua, 2004), it is now a commercial product. It covers the

domains of arithmetic calculations, expansion, simplification and factoring of algebraic

expressions, solution of polynomial and rational equalities and inequalities. The system

combines features of microworlds and Computer Algebra Systems. The student can type

an algebraic expression, suggest its domain (calculation, expansion-simplification,

factoring, solution) and enter the solution steps. At each step, the system checks the

studentôs input for equivalence using encoded transformation rules. As a result of this

type of checking, the system only suggests if the expression entered by the student is

correct or incorrect, without any further feedback about the error committed. However,

the student can ask for suggestions about the possible operations that he/she can perform

and can also ask the system to perform them. We could say that the resulting tutoring

model is almost equivalent with that of the MATHESIS tutor though less fine-grained. In

unusual situations, this can lead the Aplusix system to ñmissò intermediate student errors.

For example, the expression ςὼ φ ὼ φ ὼ is correctly expanded and

simplified by changing the signs of the parenthesized terms as in ςὼ φ ὼ φ ὼ

ςὼ ρς. However, a student can arrive at the correct result by making the same mistake

twice, that is, not changing the signs of ɀὼ in the first parenthesis and of ὼ in the

second one, as in ςὼ φὼ φ ὼ ςὼ ρς! Moreover, the Aplusix system has

considerable limitations to the kind of expressions that it can factor: polynomial

expressions in one variable and degree no higher than 4, or in two variables and degree at

most 2. It cannot handle expressions like σὼώᾀ φὼώᾀ, ὼ ώ, ὼ ώ ᾀ or

τὼὼ χ τψ.

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 66

As far as the author knows, the MATHESIS Algebra Tutor is unique with regard

to the combined breadth and depth of its domain expertise model as well as the intelligent

task recognition feature.

2.5 EVALUATION OF THE MATHESIS SYSTEM

The MATHESIS Algebra Tutor is a research prototype, performance-oriented,

domain expert system with emphasis on the scaling up problem. The tutor is part of the

MATHESIS project, which aims at the development of authoring tools for real world

model-tracing math tutors. Therefore, the MATHESIS Algebra Tutor and the

MATHESIS tutoring school built around it were designed to become part of real

educational settings. For this reason, the following factors were taken into consideration:

1) Teaching performance: In order for an intelligent system to be used by teachers and

students, it should contribute to observable positive learning outcomes. Besides any

kind of scientific evaluation, teachers and students must feel and see that using the

system helps students learn more effectively. It has been shown that model-tracing

tutors do produce considerable learning outcomes, mainly because of their domain

expertise models (Corbett 2001; Ritter, Kulikowich, Lei, McGuire, & Morgan 2007).

In this work a holistic approach was adopted: developing a deep model of a

sufficiently broad domain in mathematics with intelligent task recognition and deep

model-tracing.

2) Usability: This factor is multidimensional, with the most important dimensions being:

a) Easy to learn and use interface. Care has been taken to keep the user interface as

simple as possible ï given the complex task of teaching that this interface must

perform ï and as close as possible to the ñtraditionalò way of doing things. For the

2.5 Evaluation of the MATHESIS System

 67

teachers, this means following the day-to-day workflow of selecting, assigning

and assessing exercises. For the students, effort has been made to keep the

problem-solving procedure as close as possible to the pen and paper paradigm

without losing the benefits of a digital environment.

b) Easy access to the system. The MATHESIS system is web based and therefore

accessible anytime from anywhere, provided there is an internet connection. In

addition, it has minimal requirements in hardware and connection speed.

3) Scalability: The set of exercises that the tutor is able to teach has to be of considerable

breadth and depth. Limiting the set of supported exercises is a major factor of system

rejection by the teachers. Teachers must be given the flexibility to choose exercises of

different complexity and difficulty levels in order to accommodate the varying levels

of competence of their students. The systemsô deep and broad domain expertise

model in conjunction with the intelligent task recognition system covers a

considerable set of exercises.

2.5.1 Evaluation by Teachers

The system has been demonstrated to real math teachers, both through on-site live

presentations and through invitations to use it online. The most extensive evaluation of

the system was held in a three hoursô workshop at the 2
nd

 PanHellenic Conference on

Digital and Web Applications in Education, held in Naoussa in April of 2010

(http://hmathia10.ekped.gr/) The purpose of the workshop was to teach math teachers the

use of the system and investigate their attitude towards adopting the system in their

everyday teaching. More specifically, the author wanted to investigate their opinions

http://hmathia10.ekped.gr/

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 68

regarding the following system features, which we consider the most decisive for the

adoption of the system by a broad group of math teachers:

¶ The usability of the system.

¶ The ability to create their own exercises and assign them to individual students.

¶ The teaching performance of the system, particularly the depth and granularity of

the domain model.

¶ The value of the fine-grained student model for their assessment tasks.

Forty (40) math teachers in secondary education participated in the workshop.

Most of them were young, around 30 years old, self-motivated and positive in using

computer programs for math teaching.

First, the teachers used the LMS to sign up, create students and enroll them to

classes. Then, they used the existing test papers to assign exercises to their students. They

have actually assigned one exercise for each one of the 16 top-level skills covered by the

tutor as well as a few exercises with combinations of these skills. The teachers spent most

of their time solving the assigned exercises as if they were students. They were also

instructed to make deliberate mistakes to test the systemôs responses. They were also

instructed to inspect the student model between the solutions of the exercises to see how

this model was dynamically updated by their performance as students.

After using the system, the teachers filled in a short questionnaire. The questions

and the teachersô answers are shown in Table 2.5. These questions are in direct

correspondence with the aforementioned system features the author wanted to evaluate.

Thirty five teachers (87.5%) found the system easy or fairly easy to use (Question

1). Thirty two teachers (80%) agreed that it naturally follows the short- and long-term

tutoring tasks workflow (Question 2). Twenty eight teachers (70%) appreciated the

2.5 Evaluation of the MATHESIS System

 69

freedom provided by the system to create their own work papers with their own

exercises, as well as the ability for individualized assignment of exercises (Questions 3

and 4). Thirty two teachers (80%) found the fine grained student model unique and

decisive when it came to assessment. However, five teachers (12.5%) considered that it

might be too fine-grained for well-performing students. Three teachers (7.5%)

complained that this step-by-step guidance of the model-tracing algorithm could be too

authoritative and restrictive in the development of the studentsô self-confidence (Question

5). All forty (40) teachers were impressed by the human-like step-by-step guidance given

to the student by the system and the ability to see the studentsô solution steps (Questions

6 and 7).

Table 2.5. Evaluation results given by forty (40) math teachers after a three-hour hands-

on workshop (questions are translated from Greek)

Questions Answers

1. You find the overall use of

the system...

Easy

31/40

(77.5%)

Fairly Easy

4/40

(10.0%)

Fairly Hard

3/40

(7.5%)

Hard

2/40

(5.0%)

2. How well does the Learning

Management System fits your

day-to-day teaching tasks?

Very much

19/40

(47.5%)

Much

13/40

(32,5%)

Quite well

8/40

(20.0%)

Not at all

0/40

(0.0%)

3. You find the ability to create

your own exercises as...

Very Important

18/40

(45.0%)

Important

10/40

(25.0%)

Indifferent

12/40

(30.0%)

Useless

0/40

(0.0%)

4.You find the ability to assign

different exercises to different

students as...

Very Important

18/40

(45.0%)

Important

10/40

(25.0%)

Indifferent

12/40

(30.0%)

Useless

0/40

(0.0%)

5.Do you think that the level of

analysis for the solution steps

proposed for each operation is...

Excessive

8/40

(20.0%)

Normal

32/40

(80.0%)

Inadequate

0/40

(0.0%)

6.How would you characterize

the step-by-step guidance of the

student?

Very Important

40/40

(100.0%)

Important

0/40

(0.0%)

Indifferent

0/40

(0.0%)

Useless

0/40

(0.0%)

7. How would you characterize Very Important Important Indifferent Useless

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 70

the ability to see the studentsô

solution steps regarding his/her

assessment?

40/40

(100.0%)

0/40

(0.0%)

0/40

(0.0%)

0/40

(0.0%)

2.5.2 Evaluation in a Real Classroom

In late 2011 the system was also used and evaluated for three months in a third

grade class (ages 14-15) of 20 students in a junior high school at the town of Drama, in

northern Greece. The purpose of this evaluation was to integrate the use of the system in

the normal, daily, official educational practice and investigate the following features:

¶ The usability of the system.

¶ The studentsô attitude towards the tutoring performance of the system, particularly

the fine-grained, step-by-step guidance provided by the system.

¶ The affective impact of the system to the students, particularly the impact on

frustration and fear during the solution of exercises.

¶ The potential raise of student performance.

Mathematics in this grade is taught four hours a week using the textbook,

blackboard lessons and worksheet practice both in classroom and at home. In this

evaluation three hours were taught in the traditional way using blackboard lessons and

worksheet practice. The fourth hour was taught in the schoolôs computer laboratory,

where students used the MATHESIS system. Some of the students also used the system

from their homes for extra practice. The system was evaluated by the students for its

usability and tutoring ehavior using short questionnaires (Table 2.6). The results of the

studentsô evaluation are:

Usability: 85% of the students found the system easy to learn and use, while the rest 15%

found it fairly easy to learn (Question 1). In practice, the first group of students

2.5 Evaluation of the MATHESIS System

 71

(85%) needed one or two 45-minute sessions with the system to get fully

acquainted while the second group (15%) needed three or four sessions.

Tutoring performance: 75% of the students said that the guidance and assistance they got

from the system was similar to the human tutorôs teaching. The rest 25% found

the help and guidance of the system too detailed and fine grained (Question 2).

These students were the best performing ones and they proposed that the system

should allow the student to skip some ñtrivialò problem solving steps.

Affective impact: 85% of the students replied that the use of the system helped them to

overcome the most common emotional problems they face with mathematics, that

is, frustration and disappointment (Question 3). The reasons are that they have the

time they need to think (75%), they get step-by-step guidance (65%), they have

the freedom to try the solution steps they think correct (65%) and make mistakes

(90%) (Question 4).

Table 2.6. Evaluation results given by twenty (20) students after a three-month period

(questions are translated from Greek)

Questions Answers

1. You find the overall use of

the system...

Easy

17/20

(85.0%)

Fairly Easy

5/20

(15.0%)

Fairly Hard

0/20

(0.0%)

Hard

0/20

(0.0%)

2. How would you characterize

the step-by-step guidance of the

tutor?

Too detailed

5/20

(25.0%)

Natural

15/20

(75.0%)

Inadequate

0/20

(0.0%)

3. You find that your frustration

when you solve an exercise with

the tutor is...

Bigger

2/20

(10.0%)

Equal

1/20

(5.0%)

Lower

17/20

(85.0%)

4. Which do you think are the

most important advantages for

you when using the tutor?

(multiple answers)

Adequate time

to think

15/20

(75.0%)

Freedom to

make

mistakes

18/20

(90.0%)

Step-by-

step

guidance

13/20

(65.0%)

Ability to

try

possible

solutions

16/20

(65.0%)

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 72

 Cognitive performance: It is the authorôs belief that the most important attribute of an

intelligent tutoring system is its cognitive performance, that is, its ability to build

deep, long-term and transferable knowledge within the studentôs minds. The

cognitive performance of the MATHESIS Algebra Tutor was specifically tested

in the domain of factoring, using the methods of common factor and identities

difference of squares ὼ ώ ὼ ώ ὼ ώ, square of sum ὼ ςὼώ

ώ ὼ ώ and square of difference ὼ ςὼώ ώ ὼ ώ . The students

were initially taught this subject for six weeks without using the system at all.

After this period, the students completed a test to assess mastery of the subject.

Then, the students used the MATHESIS system for two weeks to solve all the

relevant exercises provided by the system. Some of these exercises can be found

in: Figure 2.17, exercises 1, 2, 3 and 4; Figure 2.16, exercise 15; and Figure 2.18,

exercise 9. Right after they had completed these exercises, they took a post-test

with exercises similar to those of the pre-test. The results are shown in Table 2.7.

There, the pre-test items are denoted by ñPreò, while post-test items are denoted

by ñPostò. In the left column four pairs of exercises are shown. For each pair the

pre-test and the post-test exercises are shown. The next three columns show the

elementary math skills needed to correctly perform each factoring method. For

each skill, the percentages of students who performed it correctly are shown both

for the pre-test and post-test exercises.

2.5 Evaluation of the MATHESIS System

 73

Table 2.7. Studentsô performance rise by the MATHESIS Algebra Tutor

Exercise 1

Pre:

φὼώ σὼώ ωὼώ

σὼώςώ ὼ σ

Post:

ψὼώ τὼώ ρςὼώ=

τὼώ ςώ ρ σὼώ

Math Skills

Recognize

Common Factor

Method

Calculate

Common Factor

Calculate

Quotients

inside the

parenthesis

Pre Post Pre Post Pre Post

85% 90% 65% 85% 70% 80%

Exercise 2

Pre:

τώ ψρ

ςώ ω

ςώ ω ςώ ω

Post:

ω ςυὼ=

σ υὼ

σ υὼ σ υὼ

Math Skills

Recognize

Difference of

Squares Method

● ◐
● ◐ ● ◐

Find the Squares
Apply t he

Identity

Pre Post Pre Post Pre Post

85% 95% 50% 65% 60% 80%

Exercise 3

Pre:

ὼ φὼώ ωώ

ὼ ςϽὼϽσώ σώ

ὼ σώ

Post:

ςυὥ φπὥὦ σφὦ

υὥ ςϽυὥϽφὦ φὦ

υὥ φὦ

Math Skills

Recognize Square

of Sum Method

● ●◐◐
● ◐

Find the Squares

and the Double

Product

Apply the

Identity

Pre Post Pre Post Pre Post

85% 95% 50% 65% 60% 80%

Exercise 4

Pre:

ὥ ψρ

ὥ ω

ὥ ω ὥ ω

ὥ ω ὥ σ ὥ σ

Post:

ρφ ὼ

τ ὼ

τ ὼ Ͻτ ὼ

Math Skills

Recognize

Difference of

Squares Method

● ◐
● ◐ ● ◐

Find the Squares
Apply the

Identity

Pre Post Pre Post Pre Post

9/20

45%

12/20

60%

7/20

35%

11/20

55%

7/20

35%

9/20

45%

τ ὼ Ͻς ὼ

τ ὼ Ͻς ὼϽς ὼ

4/20

20%

(4/9

44%)

9/20

45%

(9/12

75%)

4/20

20%

(4/7

57%)

6/20

30%

(6/11

55%)

3/20

15%

(3/7

43%)

6/20

30%

(6/9

67%)

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 74

Exercise 1 is a common factor method. Exercises 2 and 3 correspond to the three

different identities mentioned above. Although they seem to share some identical sub-

skills, like the ñFind squaresò and ñApply identityò, in practice the identity ὼ ςὼώ

ώ ὼ ώ is more demanding: the student has to verify that the third term is actually

the double product of the two squares and take into account the sign of the double

product. The similar success percentages in Exercises 2 and 3 do not reflect these subtle

differences in the application of these identities. Exercise 4 is a more complex one. First,

the term ὼ is a square of a square that is, ὼ . Second, after the first application of the

identity ὼ ώ ὼ ώ ὼ ώ), the term τ ὼ , which is also a difference of

squares, appears. These two difficulty factors significantly reduce the success

percentages. In the pre-test only nine students (45%) recognized that ὼ ὼ and of

these students, only four (20%) factored the term τ ὼ . The corresponding results for

the post-test (60% and 45% correspondingly) are considerably raised but still remain low.

It is the authorôs opinion that this comparison further supports the empirical

observation that in mathematics there are non-intuitive practical differences in what are

formally ñidentical tasksò. It seems that the application of the same task (square

recognition) in a more complicated expression, like ὼ, demands the recall and

application of ñdeeperò sub-skills like the one expressed by the formula ὼ ὼ . In

turn, this fact supports the necessity for broader and deeper models in intelligent tutoring

systems. In any case, the results in Table 2.7 show a considerable performance rise, given

the limited time of two weeks that the students had in their disposal for using the

MATHESIS system.

 75

2.6 DISCUSSION AND FURTHER WORK

The MATHESIS system and especially the MATHESIS Algebra Tutor is a

successful proof-of-concept system. The basic research hypothesis of the MATHESIS

project is that, in order to build successful intelligent real-world tutoring systems, we

must build powerful domain expertise models. The engineering of such broad and deep

models has to overcome the common obstacle of all expert systems, the knowledge

acquisition bottleneck: the extraction of the expertise from domain experts and its

representation in efficient ways. In the domain of knowledge engineering, the most

profitable solution up to now is knowledge reuse, which is achieved through open,

modular, interchangeable, inspect-able, formal knowledge representations and system

implementations (Aitken & Sklavakis 1999). Equally important, the models must be deep

and broad, having a wide basis of low level knowledge about simple task performance,

on top of which is built the knowledge for performing higher level domain tasks.

Otherwise, models are brittle (Lenat & Guha 1990), performance is limited, scaling up is

intractable and the systems fail to cope with real-world demands. The author believes that

the MATHESIS Algebra Tutor incorporates all these characteristics that make it a

successful real-world intelligent tutoring system.

Of course, the system is an experimental prototype and more evaluation is needed.

The teachers that took part in its evaluation were self-motivated and enthusiastic about

the use of technology in education. Also, they did not use the system for a long period of

time in their everyday teaching duties and they were under direct supervision when they

met any difficulties in using the system. Therefore, more evaluation is needed before the

system is ready for widespread use by a broad group of teachers. As for the learning

CHAPTER 2: THE MATHESIS ALGEBRA SCHOOL

 76

outcomes, a comparison group of students was not used. The reason is that the system is

designed as an additional learning aid and not as a self-contained teaching method. In

addition, the system was evaluated only in the domain of factoring and not the whole

domain that the system covers. Finally, a feature of the system that has not been

adequately evaluated is its fine-grained student model and the possible benefits of the

detailed information it provides to both students and teachers.

In order to further investigate the reusability and expandability of the system, one

could try to extend its domain model to teach algebraic operations of rational algebraic

expressions. To simplify rational expressions, a student should make full use of the

operations already taught by the MATHESIS Algebra Tutor. Implementing such a

demanding task will be the best test for the knowledge reusability and implementation

extensibility of the MATHESIS system.

77

Chapter 3

78

79

Chapter 3: The MATHESIS Meta-Authoring Framework

3.1 INTRODUCTION

The MATHESIS tutor forms a challenging landmark for existing authoring

frameworks and their authoring tools, for the following reasons:

a) To the best of the authorôs knowledge, there is no other model-tracing Algebra

Tutor able to teach the expansion and factoring of any algebraic expression that

contains any combination of the math skills (algebraic operations) covered by the

MATHESIS tutor.

b) None of the Algebra Tutors created so far features real time problem analysis,

solution and tutoring.

c) Supported by its intelligent task recognition feature, the MATHESIS tutor can be

expanded with other algebraic operations like rational expressions, equations of

first and second degree as well as rational equations.

Chapter 3: The MATHESIS Meta-Authoring Framework

 80

d) Current authoring frameworks and their authoring tools cannot support the

authoring of such a tutor.

Despite the efforts, advancements and successes in the currently developed

authoring frameworks and the corresponding tutors, these frameworks have worked

around the knowledge acquisition problem rather than confronting it directly. As a

consequence, most of the developed tutors suffer from limited depth and breadth,

whereas those having broader and deeper domain expertise models suffer from scalability

issues. This is the motivation to deal directly with the knowledge acquisition problem in

order to produce tutors that cover broader and more complex domains in a scalable way.

The rest of the chapter is structured as follows: Section 3.2 presents the

background of the thesis work consisting of an overview of the state-of-the-art in

authoring frameworks, the tutors produced and how they suffer from the knowledge

acquisition bottleneck, coupled with a description of how the MATHESIS meta-

authoring framework provides the means to deal with this problem by using the results of

research in the ontological engineering field. Section 3.3 presents an overview of the

MATHESIS meta-authoring framework. Section 3.4 describes the key characteristic of

the framework, OntoMath , a meta-knowledge engineering language for the

representation of procedural authoring knowledge within the MATHESIS ontology as an

executable authoring model. Finally, Section 3.5 presents the MATHESIS authoring and

meta-authoring tools.

3.2 Background

 81

3.2 BACKGROUND

This Section presents an overview of the state-of-the-art in authoring frameworks

and the tutors produced, focusing on the knowledge acquisition bottleneck issue. Then it

shows how the MATHESIS meta-authoring framework provides the means to deal with

this problem.

3.2.1 Related Work

The most successful and widely used math MTTs are Cognitive Tutors developed

by Carnegie Learning11, based on more than twenty years of cognitive science research at

CMU (Koedinger & Corbett, 2006). Cognitive Tutors are now an integral part of

complete curricula used in hundreds of middle and high schools throughout the United

States. Cognitive Tutors have to adapt to very strict guidelines and educational goals of

the US educational system, thus they are not designed to face the breadth, depth and

scalability issues. Instead, they follow the textbook by teaching specific exercises that

train the students in specific, simple cognitive skills that donôt contain other sub-skills.

Each problem has its own simple cognitive model and interface. Therefore, there is

actually a set of independent tutors and not one tutor with a common cognitive model and

interface. Concerning their scalability, the set of anticipated steps for a problem is

precomputed by solving the problem in all acceptable ways by running a rule-based

problem-solver (Van Lehn, 2006). Carnegie Learning uses a proprietary authoring tool,

the Cognitive Tutor SDK (Blessing, Gilbert, Ourada & Ritter, 2009), which supports the

development of cognitive models based on the ACT Theory of cognition (Anderson,

1993). Problem solving states are represented by a hierarchy of goalnode instances with

11 www.carnegielearning.com

Chapter 3: The MATHESIS Meta-Authoring Framework

 82

their properties and values, while problem solving steps are represented by a hierarchy of

predicates that operate on the goalnodes. No information is given on how broad and deep

these cognitive models can be or if they can be reused between the various tutors

developed.

A publicly available set of authoring tools for Cognitive Tutors are the Cognitive

Tutors Authoring Tools (CTAT12) developed at the Human-Computer Interaction

Institute of Carnegie Mellon University (Aleven, McLaren, Sewall, & Koedinger, 2006).

After 7 years of use, CTAT is the most mature and widely used authoring tool. It supports

two types of tutors, cognitive tutors, which were described above, and example-tracing

tutors (Aleven, McLaren, Sewall, & Koedinger, 2009). While cognitive tutors have a

cognitive model, implemented as a set of production rules in Jess13, example-tracing

tutors have a ñgeneralized exampleò of the solution of a specific problem, implemented

as a ñbehavior graphò, an acyclic graph where nodes represent problem-solving states and

links represent problem-solving steps. Example-tracing tutors are authored using a

programming-by-demonstration technique by creating initially a tutor interface for the

targeted problem type through drag-and-drop techniques, then demonstrating through this

interface the problemôs solution and finally editing, annotating and generalizing the

resulting behavior graph. In the case of cognitive tutors, the last step demands the

development of the cognitive model implemented as production rules in Jess by AI

programmers.

ASTUS14 is a framework for domain independent model-tracing tutorsô

development. It is designed to provide a knowledge representation language for the

12 http://ctat.pact.cs.cmu.edu
13 http://www.jessrules.com
14 http://astus.usherbrooke.ca

3.2 Background

 83

development of the cognitive model richer than that of CTAT (Paquette, Lebeau, &

Mayers, 2010). The purpose is to model domains from a pedagogical perspective rather

than a cognitive one, allowing experimentation with varied pedagogical strategies. The

framework is relatively new and the authoring language is not yet fully developed, with

only a few tutors implemented and no authoring tools developed.

ASPIRE15 is an authoring framework for the development of constrained-based

tutors (Mitrovic, Martin, Suraweera, Zakharov, Milik, & Hooland, 2009). These tutors do

not use a cognitive model to trace the studentôs solution in a step-by-step basis, but they

are equipped with a set of constraints that describe the forms of correct solution(s) for the

tutored problem. In a comparative study between model-tracing and constraint-based

tutors (Mitrovich, Koedinger, & Martin, 2003), the authors conclude that ñModel-tracing

is an excellent choice for domains where appropriate problem solving strategies are

well-defined, and where comprehensive feedback on them is desirable. On the other

hand, CBM offers a workable alternative when such strategies are not available or

appropriate, or there is too little time or resources to build a model-tracing knowledge

baseò. Therefore, in addition to the breadth and depth issue, constraint-based tutors

cannot provide the granularity necessary for, e.g., an algebra tutor.

Whenever there is need for a broad and/or deep cognitive model, authors usually

start from scratch and fall back to customized solutions. Two such examples are the

Andes16 physics tutor (VanLehn, Lynch, Schulze, Shapiro, Shelby, Taylor, Treacy,

Weinstein, & Wintersgill, 2005) and the Visual Classification Tutoring Framework

(VCT) (Crowley & Medvedeva, 2006).

15 http://aspire.cosc.canterbury.ac.nz
16 http://www.andestutor.org/

Chapter 3: The MATHESIS Meta-Authoring Framework

 84

Andes contains 356 physics problems (mechanics, electricity and magnetism)

solved by a knowledge base of 550 physics rules. These rules comprise ñmajor

principlesò, like Newtonôs second law (F = mĀa), as well as ñminor principlesò, like

mathematical and common sense justifiers. The creation and maintenance of such a

broad, deep and granular cognitive model raises drastically the demands in expertise and

time resources (VanLehn et al., 2005). As far as it concerns the development time, Andes

itself took five years to be built, while its development was based on the Cascade

(VanLehn, 1999) and Olae (VanLehn, Johnes, & Chi, 1992) projects. Finally, there were

significant scalability problems, since in order to add a new rule to the cognitive model

authors should re-inspect the whole model! (VanLehn et al., 2005)

The same findings hold for the Visual Classification Tutoring (VCT) framework,

which generally supports the development of tutors for visual classification, but

specialises in medical domains like radiology, haematology and pathology. The

framework makes the best provision for accommodating broad, deep, granular and

scalable cognitive models by using ontologies to represent separately generic models for

the domain model, the task model and the pedagogic model. This generic framework was

used to develop SlideTutor
7
, a model-tracing tutor for a sub-domain of inflammatory

diseases of skin, covering 33 diseases with 50 different diagnostic features. Once again,

the expertise and time costs are high: an expert pathologist in cooperation with a

knowledge engineer must annotate each diagnostic case with the contained disease and its

diagnostic features. Based on this information, the task model produces dynamic solution

graphs that guide the student in his/her diagnosis.

The use of ontologies and semantic web services in the field of ITSs is relatively

new. Ontological engineering is used to represent learning content, organize learning

repositories, enable sharable learning objects and learner models and facilitate the reuse

3.2 Background

 85

of content and tools (Dicheva, Mizoguchi, & Greer, 2009). Examples of intelligent

tutoring systems that use ontologies are Activemath (Melis, Andr¯s, BǸdenbender,

Frischauf, Goguadze, Libbrecht et al. 2001), which uses ontological representation of

mathematical concepts, learning goals and acquired knowledge, and SlideTutor17.

However, these are intelligent tutoring systems and not authoring systems.

An ontology-based authoring system for constraint-based tutors is ASPIRE

(Suraweera et al., 2009), which uses ontologies to define the concepts of the domain and

then, based on these definitions, to provide the constraints for possible solutions used by

the authored constraint-based tutors.

The most relevant work to the MATHESIS framework is the

OMNIBUS/SMARTIES project (Mizoguchi, Hayasi, & Bourdeau, 2009). The

OMNIBUS ontology is a heavy-weight ontology of learning, instructional and

instructional design theories. Based on the OMNIBUS ontology, SMARTIES (SMART

Instructional Engineering System) is a theory-aware system that provides a modelling

environment and guidelines for authoring learning/instructional scenarios. While the

OMNIBUS/SMARTIES system provides support mainly for the design phase of ITS

building, the MATHESIS framework aims at the analysis and development phases. It

provides a semantic description of both tutoring and authoring knowledge of any kind of

tutor in the form of composite processes and the way to combine them as building blocks

of intelligent tutoring systems. Thus, it provides the ground for achieving reusability,

shareability and interoperability.

Although ASPIRE and OMNIBUS/SMARTIES are ontology-based authoring

systems, they differ from MATHESIS framework being a meta-authoring system. These

17 http://slidetutor.upmc.edu/

Chapter 3: The MATHESIS Meta-Authoring Framework

 86

systems provide specific authoring programs that use a static ontological representation

of tutoring and authoring knowledge to build a specific kind of tutors. The MATHESIS

framework provides meta-authoring tools and an authoring language for expert authors to

write authoring programs in the form of executable OWL-S authoring processes. These

authoring programs can then be executed by the authoring tools to guide less expert

authors in generating the ontological representation of any kind of tutor. This ontological

representation of the tutor can then be translated to program code.

3.2.2 Ontological Engineering and the Knowledge Gap Problem

The approach adopted in this thesis combines the research in the field of

authoring tools for ITSs with the field of knowledge engineering tools for knowledge-

based systems. This line of research starts with the first attempts to define reusable

problem-solving knowledge through the introduction of the concepts of Generic Tasks

(Chandrasekaran, 1986) and heuristic classification (Clancey, 1985). It continues with

the concepts of task ontologies (Mizoguchi, Vanwelkenhuesen, & Ikeda, 1995) and the

development of knowledge modeling frameworks like the MULTIS project (Mizoguchi,

Vanwelkenhuesen, & Ikeda, 1995), the Prot®g® project (Puerta & Musen, 1992) and the

KADS (Wielinga, Schreiber, & Breuker, 1992) and CommonKADS (Schreiber, et al.,

1999) projects. The latter introduced the concept of Problem Solving Methods (PSMs).

With the emergence of the Web, the necessity for representing and deploying PSMs in a

shareable and reusable way led to their semantic (ontological) representation as Web

Services. The ultimate goal is the development of knowledge-based systems from

reusable knowledge components found on the web, a task known as automated web

3.2 Background

 87

service composition. Various frameworks with web services description languages have

been developed, OWL-S being one of them. Although it is not an immediate intention of

this thesis to view ITS authoring as a web service composition task, it sets the

foundations, focusing on the shareability and reusability of authoring and tutoring

knowledge provided by OWL-S.

Based on the success of the ontological engineering approach in the domain of

expert systems (Aitken & Sklavakis, 1999; Lenat, 1995; Sklavakis, 1998), as well as in

the domain of intelligent tutoring systems (Mizoguchi, Hayashi, & Bourdeau, 2009), two

research goals were set:

i. the complete ontological representation of a model-tracing tutorôs modules, that

is, the user interface, the tutoring model, the domain expertise model and the

student model,

ii. the complete ontological representation of the authoring knowledge that was used

to build these models, and

iii. the extensive use of standardized languages and publicly available modular tools.

For these reasons, a bottom-up approach was adopted: Initially, the MATHESIS

Algebra Tutor was developed to be used as a prototype target tutor (Sklavakis &

Refanidis, 2008). Then, based on the knowledge used to develop the Algebra Tutor, an

initial version of the MATHESIS ontology has been developed using the Ontology Web

Language - OWL18 (Sklavakis & Refanidis 2009b; Sklavakis & Refanidis, 2010b). As

this first version of the ontology was developed in a bottom-up direction, it emphasized

on the representation of the tutorôs models, namely the interface, tutoring and domain

18http://www.w3.org/TR/owl-features/

Chapter 3: The MATHESIS Meta-Authoring Framework

 88

expertise models. The ontology also contained a representation of the authoring

knowledge at a rather conceptual level. At the final stage of the project, the generic meta-

authoring tools were developed (Sklavakis & Refanidis, 2014). These tools include:

i. An executable authoring language, ONTOMATH, based on the process model of

OWL-S19,

ii. editing tools for the development of ONTOMATH executable authoring expertise

models, that is, an ontological representation of the declarative and procedural

authoring knowledge, and

iii. an interpreter for executing the ONTOMATH authoring models.

Using these tools, an authoring model was built that, when executed, builds the

ontological representation of a model-tracing monomial multiplication tutor identical to

the one contained in the original Algebra Tutor. In parallel, authoring tools for the

development of model-tracing tutors have been developed. These tools are used to

support the meta-authoring tools in the development of the executable authoring model

by automating some top-level authoring processes of the MTT under development and

providing visualisation and browsing facilities for the inspection of the tutorôs developed

models.

3.3 AN OVERVIEW OF THE MATHESIS META-AUTHORING FRAMEWORK

The MATHESIS framework is mainly a meta-knowledge engineering framework.

It is well known that knowledge engineering is knowledge of how to extract problem-

solving knowledge from domain experts, represent this knowledge in a suitable format

and implement a system that uses this knowledge to solve problems like a human expert

19 http://www.w3.org/Submission/OWL-S/

3.3 An Overview of the MATHESIS Meta-Authoring Framework

 89

(Aitken & Sklavakis, 1999; Lenat, 1995; Sklavakis, 1998). In the case of authoring

systems for ITSs, a meta-authoring framework should enable knowledge engineers

(meta-authors) to extract authoring knowledge from expert authors, that is, cognitive

scientists and programmers (Artificial Intelligence or general purpose); represent

authoring knowledge in a suitable format; and implement a system that uses this

knowledge to guide authors of lower levels of expertise to build tutoring systems. To

achieve these three objectives, the MATHESIS meta-authoring framework adds a

semantic level on top of the knowledge level of each authoring framework (Figure 3.1).

Its purpose is to represent declaratively (ontologically) the authoring expertise used to

build ITSs, now lying partially unexpressed into the heads of authoring experts and

partially expressed into the authoring tools, as well as the authored tutoring knowledge

hard-wired into the ITSs themselves.

The key point of the proposed framework is the ontological declarative

representation of these two kinds of knowledge. At the same time, and that was the most

challenging problem, these declarative representations should also be executable. More

specifically, the deployment of the framework is done in the following stages (Figure 3.1,

bottom to top):

1. A knowledge engineer specialized in the MATHESIS framework (meta-author),

extracts the authoring expertise from the domain experts, that is, cognitive

scientists and AI programmers. The expertise must cover all stages of ITS

development, that is, analysis, design and implementation. This constitutes a

crucial difference between the framework-specific authoring tools described in

the previous Section and the objectives of the MATHESIS framework: the former

support parts of the ITS development stages, usually leaving out the most difficult

Chapter 3: The MATHESIS Meta-Authoring Framework

 90

ones like the analysis stage, while the latter allows meta-authors to encode

authoring knowledge of any stage.

2. Using the meta-authoring tools, the meta-author creates an executable ontological

model of the extracted authoring knowledge, the authoring expertise model. This

model contains authoring processes of ONTOMATH, a special purpose language

developed within the framework. ONTOMATH defines two kinds of authoring

processes: (a) composite authoring processes, which correspond to the

functions/procedures of a programming language and are represented using the

process model of OWL-S, and (b) atomic authoring processes, which correspond

to the statements of a programming language. When the authoring model is

executed by a non-expert author (e.g. domain expert), the ONTOMATH interpreter

executes them by calling corresponding Java methods that in turn use the Prot®g®

API to guide the non-expert author in building the ontological representation of

the ITS models (cognitive, tutoring, interface) into the MATHESIS ontology.

Therefore, the authoring processes are the semantic representation of the

framework-specific authoring tools.

3. The ontological representation of the ITSôs various models (cognitive, teaching,

interface) contain both declarative and procedural knowledge. An example of

declarative knowledge would be the interface structure (interface model) or the

problem-solving concepts and stages of the cognitive model. An example of

procedural knowledge would be the model-tracing algorithm (tutoring model) or

the problem-solving steps of the cognitive model. In the MATHESIS framework

these knowledge elements are defined by the meta-author as generic elements.

Declarative knowledge elements are defined using the common OWL structures:

classes, instances, properties and values. Procedural knowledge elements are

3.3 An Overview of the MATHESIS Meta-Authoring Framework

 91

defined using the process model of OWL-S, just like the composite authoring

processes described in stage 2. It is these generic knowledge elements that the

executed authoring processes act on, guiding the non-expert author to create

specific-ones for the tutor under development.

4. The meta-author may develop framework-specific (e.g. model tracing) authoring

tools to help himself develop the authoring model and the non-expert authors in

developing the tutor(s). These are mainly visualisation tools, although they can

also provide manual creation and editing of tutor-specific knowledge elements

based on generic ones. This last facility aims at accommodating more expert

authors that can develop parts of the tutor directly, without executing the

corresponding authoring processes. A suite of such framework-specific tools for

model-tracing tutors has been developed.

5. Having created the ontological representation of the tutor, the non-expert author

can create its implementation by translating the ontological model to specific

programming languages. For example, in the case of the MATHESIS Algebra

Tutor, the interface model is translated to HTML and the cognitive and tutoring

models to JavaScript. These translations are performed automatically by special

translation tools. In case of other target programming languages, we need to

develop its corresponding ontological representation as well as the translation

tool.

All stages are performed using the MATHESIS tools (Figure 3.2)

Chapter 3: The MATHESIS Meta-Authoring Framework

 92

Fig. 3.1 The MATHESIS Meta-Authoring Framework

 93

Fig. 3.2. The MATHESIS Tools as a tab widget in Prot®g®: (a) Framework-specific (model-

tracing) Tutor Authoring Tools, (b) Authoring Processes (Meta-Authoring) Tools,

(c) The MATHESIS Ontology Tab

3.4 THE ONTOMATH META-KNOWLEDGE ENGINEERING LANGUAGE

The main component of the MATHESIS authoring framework is the MATHESIS

Ontology. It contains three kinds of knowledge:

i. The declarative knowledge of the tutor, such as the interface structure and the

problem-solving concepts and stages of the cognitive model,

(a)

(b)

(c)

Chapter 3: The MATHESIS Meta-Authoring Framework

 94

ii. the procedural knowledge of the tutor, such as the teaching and math domain

expertise models and, finally,

iii. the authoring knowledge, that is, the declarative and procedural knowledge that is

needed to develop the tutor.

3.4.1 Procedural Knowledge Representation: The OWL-S Process Model

While the declarative knowledge is represented with the basic OWL components,

the procedural knowledge, both tutoring and authoring, is represented via the process

model of the OWL-S web services description ontology. Through OWL-S, every

authoring or tutoring task is represented as an authoring or tutoring process, composite or

atomic.

Using the OWL-S process model to represent ontologically procedural

knowledge, like teaching, math problem-solving or authoring knowledge, is the key

advantage of the MATHESIS framework that gives a new perspective in the development

of reusable authoring knowledge for intelligent tutors. OWL-S is a web service

description ontology designed to enable the following tasks:

¶ Automated discovery of Web services that can provide a particular class of

service capabilities, while adhering to some client-specified constraints.

¶ Automated Web service invocation by a computer program or agent, given only a

declarative description of the service.

¶ Automated Web service selection, composition and interoperation to perform

some complex task, given a high-level description of an objective.

3.4 The OntoMath Meta-Knowledge Engineering Language

 95

The last task is of interest for the MATHESIS framework and therefore the focus

will be set on it. To support this task, OWL-S provides, among other things, a language

for describing service compositions as seen in Figure 3.3 (Martin et al., 2005). Every

service is viewed as a process. OWL-S defines Process as a subclass of ServiceModel. There

are three subclasses of Process, namely the AtomicProcess, CompositeProcess and

SimpleProcess. Atomic processes correspond to the actions a service can perform by

engaging it in a single interaction. In the MATHESIS ontology they represent simple

statements, either tutoring or authoring, grounded to JavaScript or Java code

correspondingly. Composite processes correspond to actions that require multi-step

protocols. In the MATHESIS ontology they represent functions, either tutoring or

authoring, that call other functions (composite processes). Finally, simple processes

provide an abstraction mechanism to provide multiple views of the same process.

Currently, they are not used in the MATHESIS framework.

Composite processes are decomposable into other composite or atomic processes.

Their decomposition is achieved by using control constructs such as Sequence or If-Then-

Else. Table 3.1 shows the most common control constructs that OWL-S supports.

Any composite process can be considered as a tree whose non-terminal nodes are

labelled with control constructs. The leaves of the tree are invocations of other processes,

composite or atomic. These invocations are indicated as instances of the Perform control

construct. This special control construct takes as a parameter a process, either composite

or atomic. In the MATHESIS framework a Perform with an atomic process corresponds to

the execution of a statement, whereas a Perform with a composite process corresponds to

calling a function. This tree-like representation of composite processes is the key

characteristic of the OWL-S process model and has been used in the MATHESIS

ontology to represent both authoring and tutoring procedural knowledge.

Chapter 3: The MATHESIS Meta-Authoring Framework

 96

Fig. 3.3. Top level of the OWL-S process ontology (from Martin et al., 2005)

Table 3.1. Common control constructs supported by the OWL-S process model

Control Construct Description

Sequence A list of control constructs to be performed in order

Choice

Calls for the execution of a single construct from a given bag

of control constructs (given by the components property).

Any of the given constructs may be chosen for execution

If -Then-Else

It has properties ifCondition, then and else holding different

aspects of the If-Then-Else construct

Repeat-While & Repeat-Until

The initiation, termination or maintenance condition is

specified with a whileCondition or an untilCondition

respectively. The operation of the constructs follows the

familiar programming language conventions.

